

Mutatis Mutandis:

Evaluating DBMS Test Adequacy with Mutation Testing
Ivan T. Bowman

SAP AG

ABSTRACT

Testing consumes significant human and machine resources,

especially for large, complex systems such as database servers.

While a variety of testing approaches have been proposed to

improve the efficiency of the testing process, it is difficult to

evaluate these approaches. Mutation testing has been proposed as

a way to assess the adequacy of a test suite, assigning a score that

can be used to compare testing approaches. While promising,

serious obstacles appear to prevent mutation testing with large

software systems. Recent advances in mutation testing have

scaled to medium-sized programs of around 100,000 lines of code

but to our knowledge there are no reported studies working with

large systems with millions of lines of code and other features of

database systems that complicate testing. In this paper we explore

using mutation testing on a database server to evaluate its

suitability for comparing test suites or testing approaches.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging – testing

tools

General Terms

Reliability, Experimentation.

Keywords

Mutation testing, database servers.

1. INTRODUCTION
When developing software systems, it is important to include tests

that verify that the system as implemented meets its requirements.

Database servers are complex and large software products, and

testing them requires significant human and machine resources. In

order to maximize the effectiveness of these resources, a number

of test generation approaches have been suggested such as random

query generation or genetic algorithms. While these approaches

are intriguing, it is difficult to compare these testing approaches in

order to decide where to invest testing effort.

When evaluating a test suite to assess the reliability of a software

system, we would like to know how effective the suite is at

detecting faulty versions of the system. We would like to define

an adequacy criteria that ranks test suites based on their capability

of detecting faults in the system under test. This adequacy criteria

can be used to direct testing effort towards developing more

useful tests; it can also be used for test suite minimization,

offering a way to reduce the number of tests executed by skipping

those that don’t improve the adequacy metric.

One direct approach to evaluating test adequacy is to measure

how many faults the test suite can detect. For example, we can

monitor which tests detect faults introduced accidentally during

development cycles before the tests suites were executed. Test

suites that routinely detect more of these natural faults may be

considered superior.

Natural faults are inconvenient for comparing testing approaches.

Fortunately, there are relatively few natural faults, even during

early development periods. This relatively small number makes it

impossible to draw conclusions of any significance. Further,

natural faults would require working with multiple versions of the

system with the practical complications of a longitudinal study.

Code coverage is another approach that ranks test suites on how

thoroughly they execute the system under test (SUT). Coverage

can be measured in various ways (statement, basic block, code

paths). While coverage comparison is a natural approach based on

the fact that a test cannot detect a fault in code that it does not

execute, coverage testing fails to consider how effective the test is

at finding possible faults in the code that is covered. Merely

executing code without carefully probing the system behavior will

not detect subtle faults.

An alternative to natural faults is to artificially generate incorrect

versions of the system by fault seeding. With this approach, errors

are introduced and test suites are evaluated on their ability to

detect the faults. While these faulty versions can be generated by

hand, an early paper by Lipton [3] suggested using mutation

operators to automatically generate faulty versions of a program.

Mutation testing has a long history of research for evaluating the

adequacy of a test suite. However, there are some practical

obstacles in applying the proposed techniques to a large and

complex system such as a database server. In the remainder of this

paper, we describe these obstacles and propose solutions. We

evaluate these solutions experimentally using the SAP Sybase

SQL Anywhere database server as a system under test.

1.1 Mutation Testing
Mutation testing evaluates the effectiveness of a test suite for

detecting incorrect programs. While there are infinitely many

incorrect programs, mutation testing focuses on those that are

“close” to the correct version. A few mutation operators are

defined. Each operator modifies the source code for a program

by insertion, deletion or replacement. For example, one mutation

operator could change the and operator (&&) into or (||). A

mutant is generated by applying a mutation operator at a

specific location in the source code and compiling the modified

source. A test suite is said to kill a mutant if it contains a test

that passes when run with and fails when run with .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Request permissions from Permissions@acm.org.

DBtest'13, June 24 2013, New York, NY, USA

Copyright 2013 ACM 978-1-4503-2151-

8/13/06…$15.00.Copyright 2010 ACM 1-58113-000-0/00/0010

…$15.00.

The mutation testing process counts the number of mutants killed

by a test suite to give a mutation score. When the mutation score

is used as an adequacy measure (for example, tests are created

until all mutants are killed), we must consider a complication of

equivalent mutants. A mutant may be functionally equivalent to

the original program even though syntactically different. In this

case, it is impossible to generate a test that kills the mutant. This

gives an adequacy criteria that cannot be satisfied by any test

suites.

The issue of equivalent mutants is challenging because in general

it is undecidable whether two programs are equivalent. However,

the issue is not important when comparing two test suites (both

will have the same denominator (total mutants).

Figure 1 General Approach of Mutation Testing

Besides the issue of equivalent mutants, there are two significant

costs to the mutation testing process. First, generating the mutants

as separate programs requires a separate compile step for each

mutant created. Depending on the number of mutation operators

and the size of the source program, the compilation costs may be

prohibitive. For our study, this would require over a terabyte of

storage for 58,902 mutant binaries. Second, testing the mutants

requires running the test suite on each mutant until a test fails. For

our environment, this would require at least 25,332 hours.

1.2 Challenges of Testing Database Servers
Given the obstacles to using mutation testing on large systems, it

would be much simpler to use some coverage-based adequacy

criteria. This could either be statement-coverage or a more

targeted definition. For example, Bati, Giakoumakis, Herbert and

Surna [1] measured the number of unique function combinations

(call from function to function) in order to compare different

testing methods.

Coverage based adequacy metrics are relatively easy to compute

and they are commonly used for test case selection, prioritization

and minimization. However, developers of SQL Anywhere have

had serious concerns about using code coverage by itself as an

adequacy measure. These developers are reluctant to remove a test

from a suite even if it is redundant according to coverage metrics.

Experience with customer-reported software faults contributes to

this reluctance to use coverage-based adequacy metrics for test

suite minimization. Usually these reported faults in shipping

software occur in code locations that are in fact executed by the

test suites. The coverage-based adequacy metrics show there is a

good level of testing for the affected code, yet software faults are

occasionally missed and shipped to customers.

Database systems have a number of characteristics that may

impact the use of coverage-based test adequacy measures. In

addition to their size and complexity, database servers pose

particular testing challenges:

1. Self-Management Features. Modern database servers

adapt their processing to the current conditions. This

adaptation leads to multiple internal states that need to

be tested in combination. Tests that verify desired

properties of the system may need to be repeated with

different internal states.

2. Relational Equivalence. A DML statement can be

transformed into a number of different semantically

equivalent access plans. While logically equivalent,

these different plans execute different code paths. Tests

that verify that correct answers are returned may miss a

software fault that affects only rarely used physical

operators (or combinations of operators) leading to

intermittent failures. Alternatively, tests may miss

flaws in the cost model or query optimizer that lead to

the selection of sub-optimal plans. These types of faults

can be expensive to detect as they may require large

data sets and queries to explore the cost model fully.

3. Concurrency. Database systems often manage

concurrent requests from different client applications,

and they also use intra-query parallelism to execute

individual requests. Concurrency control primitives

need to be tested; further, concurrent execution

introduces more interactions that need to be considered

and tested.

These characteristics mean that code within database statements

needs to be tested in a number of different configurations.

Coverage based adequacy measures don’t appear to capture this

requirement and this leads to concerns for using these metrics to

compare testing approaches.

1.3 Mutation Testing for Database Systems
Mutation testing offers the possibility of a more refined adequacy

criteria than coverage based metrics. However, the apparently

prohibitive costs of the general mutant testing approach have led

to some concerns as to whether it can scale to large software

systems.

In this paper, we investigate whether mutation testing can be

applied to a database system, and evaluate the benefits of using

mutation adequacy measures. We use recent advances in mutation

testing and introduce three new techniques that allow us to

compute the mutation score for a test suite in a reasonable time

and space budget.

2. APPROACH

2.1 Mutation Operators
We define the following mutation operators:

 Function. Applies to all methods and C-style functions.

When enabled, skip the contents of the function. For

functions that do not return a value, this is equivalent to a

programmer forgetting to call a function. For those that do

return values (directly or through references), this mutation

returns uninitialized memory.

 Condition. Applies to the condition in for, while, and if

statements. When enabled, evaluate a mutated condition.

 Switch. Applies to all switch statements. When enabled,

add one to the expression.

 Case. Applies to all case statements within a switch.

When enabled, skips the contents of the case (this is

equivalent to a programmer forgetting to include a case

statement for a value.

 Default. Applies to default statements within a switch

statement. When enabled, skips the default statements.

A mutation is defined to be a single statement in the source

program that has been modified by a mutation operator.

2.2 Generating the Mutants
For a large number of mutants, compiling a separate copy of the

program is prohibitive in time and space. Instead, we follow an

approach suggested by Untch [6] and generate a single program (a

meta-mutant) that can be dynamically configured at execution

time to enable any subset of mutations. With this approach, only

one compilation step is needed, and only one copy of the

executable program is needed.

The source code is modified to execute the original code unless

the mutation is enabled. For example, in Figure 2, the original

source line A would be changed to the line in B. Here, the

mutation_on function checks the array position for this

mutation (123 in this example) and returns true if it is enabled.

A:if(len > 0)

B:if(mutation_on(123) ? (len>=0):(len>0))

Figure 2 Example of Mutation Insertion

At test time, the mutation test driver enables the desired

mutation(s) and runs tests from the test suite.

Compiling the meta-mutant requires slightly more time and space

than the original program, but it requires significantly less than

compiling each mutant separately.

2.3 Notation
Given an original system and a set of mutations that can

either be enabled or suppressed, we use to refer to the meta-

mutant system with the set mutations enabled. A special

case with the empty set gives representing the meta-

mutant with no mutations enabled. Semantically, this is equivalent

to the original system but it is different because of the extra

checks for each mutation to see if it is enabled.

Given a test , we say that kills if fails when executed

with but passes with . In this case, we write .

Given a test suite , we say that kills if there is

some test where . In this case, we write

 .

2.4 Mutation Coverage
The general mutation testing approach executes each test in the

suite on each mutant (until the mutant is killed). However, not

every mutant is executed by every test. If a test does not execute

the code affected by a mutation, running the test on the mutant is

wasted work. To avoid this waste, we follow an approach used by

Schuler, Dallmeier and Zeller [5] and we use statement coverage

information to help direct our testing efforts.

At program startup, a shared memory array (COV) is created with

one byte per mutation location. The mutation_on function sets

the corresponding byte to one, indicating the mutation location

was executed by the test.

The mutation test driver uses a preliminary step (MUTANT-

COVERAGE) to evaluate coverage by running each test in the suite

once with no mutations enabled. The driver clears COV to zero

before each test and reads the array after executing the test. We

say that a test covers mutation if, during this preliminary step,

the test executed the code location affected by . During this

step, tes execution time is recorded as well.

2.5 Running a Test
We define the function to evaluate whether a test

 passes when executing on the system with the mutations in

 enabled.

In order to evaluate the test on the modified system, we first

enable the desired mutations then start the test, waiting for a

maximum amount of time. In our experiments, we limited the test

run time to be two times the original test time. This approach

prevents an endless loop (resulting from a mutation) from halting

testing: such loops are detected as failures.

Figure 3 Determining if a test passes with mutants enabled

If a test resulted in a system crash or timeout, we restart the

system to a known state. Otherwise, we keep the system running.

As described below in Section 2.6.2, this allows us to quickly

process tests without restarting the server, but it does rely on an

assumption that future test behaviour is not affected by this test

execution.

2.6 Simplifying Assumptions
We make the following simplifying assumptions. While these

assumptions are not true in general, they allow us to greatly

reduce the effort of mutation testing.

2.6.1 Independence of Mutations
If is a set of mutants with then we assume that

kills if and only if it kills or :

This assumption allows us to infer that if a test does not kill ,

then it would not kill any subset of .

In general this assumption is not true because mutations may

interact. However, as we will show this assumption significantly

reduces testing cost.

In order to evaluate the impact of this assumption, we chose 50

tests and selected 1000 mutants for each test. For each test, we

executed the test once for each individual mutant enabled, then

with 500 groups of size 2, 100 groups of 10, 10 groups of 100 and

1 time with all 1000 mutants enabled. The independence

assumption held for all but 104 of the 30,550 groups (0.34%).

Only 12 of these cases showed a failure with a group where none

of the individual mutants showed a failure. The other 92 cases had

PASSES ()

// Returns true if the test passes on system

 Enable only the mutations in

 Start test on

 Wait at most 2* original test time

 IF test passed

 RETURN TRUE

 IF OR TIMEOUT

 -
 RETURN FALSE

Figure 4 Original mutation testing algorithm

a failure with an individual mutant that did not appear when the

mutant was enabled in a group with other mutants.

2.6.2 Test failures do not Corrupt State
A database server is usually expected to be in the running state. If

the system needs to be restarted to test each mutant, a significant

amount of time will be spent in startup and shutdown code (we

measure about 11 seconds per restart. The median test time is 0.4

seconds so this is a significant overhead.

When running a test on a mutant, there are four possible

outcomes:

 Crash. The system may crash or fail self-checks (assertions)

 Timeout. The test may take significantly longer to run

 Fail. The system may return an answer that the test rejects

 Pass. The test does not report a failure (mutant survives)

When the system crashes or fails self-checks, it is not possible to

run further tests without a restart. If a test times out, then it could

be due to an endless loop or other ongoing execution within the

server that is difficult to detect from the test system. In this case it

is best to restart before continuing testing.

When a test executes on a database server without a crash (either

passing or reporting a failure), then it is possible that the internal

state of the server has been corrupted in a way not detected by the

O/S or self-checks. Nevertheless, we assume that this does not

happen so that we can execute further tests with the same running

server, saving the cost of restarting. In order to eliminate

obviously corrupt state, the framework uses a simple “ping” query

to ensure the server is minimally responsive and restarts the test

process and connections.

2.6.3 Tests Deterministically Find Faults
An underlying assumption of mutation testing (and also coverage

metrics) is that a test behaves deterministically, executing the

same server code paths and either detecting a fault (reporting a

test failure) or passing. In reality, we know that the behaviour of

the database server is non-deterministic due to self-management

features and cost-based plan selection. Further, some of the

mutant operators lead to non-deterministic faults that may be

equivalent to the original program during some executions while

failing in others due to the contents of uninitialized memory.

When evaluating the effect of the independence assumption

(Section 2.6.1), we noted the interesting fact that some mutation

groups passed a test where individual mutants in the group failed.

It is possible this could occur due to mutant interaction where two

wrongs (mutations) make a right. Another possibility is that there

is a non-deterministic behaviour in the server code that causes a

test to have different behaviour on different executions. For the

104 cases that violate the independence assumption, we executed

the test case 10 times for each of the mutants that were included in

the 104 groups. We found there were 8 mutants that gave non-

deterministic answers, explaining 14 of the 104 violations of the

independence assumption. Test determinism is an important

assumption but it requires further investigation to understand how

well it holds in database systems with mutation testing.

2.7 Original Mutant Testing Algorithm
The original mutant testing algorithm defined by Lipton [3]

executes the test suite for each mutant until one of the tests in the

suite detects a failure. This algorithm is shown in Figure 4.

2.8 Proposed Improvements
A number of improvements have been suggested including using

mutant schemata [6] like our meta-mutant and running only tests

that execute the code modified by a particular mutant [5].

We propose the following improvements that we believe have not

been described in the literature:

2.8.1 Lethal Mutations
Some mutations are so severe that any test that executes the

mutated code will cause a crash, timeout, or test failure. We

propose an algorithm that checks for each mutant whether the

cheapest test that executes the mutated code passes. If not, we can

quickly kill the mutant using the cheapest possible test.

2.8.2 Test Ordering
Some mutants are not completely lethal but they are still killed by

a substantial portion of tests. We propose ordering test execution

so that cheaper tests are executed first, in the hopes that they will

kill mutants quickly.

2.8.3 Test Independent Mutations Simultaneously
We observe that individual tests generally do not kill many

mutants (we measure an average of 88% of mutants executed by a

test do not result in failure). If the mutants are independent and we

could enable multiple mutants that are not killed by a test, we can

avoid a separate trial for each of the mutants in the set.

We use the independence assumption to infer that

 ⋀ . This means that if we

test the meta-mutant with a test and the test passes, we then

infer that the test would pass with any of the individual mutants

enabled and there is no need to execute the test on any subset of

 . On the contrary, if test fails when executed with then we

are not sure which fault(s) cause the failure.

We propose using this simplifying assumption by using a

recursive procedure TEST-KILLS-MUTANTS () to find all of

the mutants that test kills. The procedure starts assuming the test

will pass with all mutants enabled; if so, the test kills none of

them. Otherwise, if the set is a singleton, the test kills the

individual mutant.

If contains more than one element, we divide into two

subsets of approximately equal size and investigate the

behavior of the test with respect to the subsets.

We use the algorithm in Figure 5 to compute the mutation score

for a test suite with a system . The algorithm begins by

compiling a meta-mutant. In our implementation, we applied the

five mutation operators at every statement in the subject code that

met the operator properties. Next, the algorithm executes each test

one time with all mutants disabled, monitoring which mutant

locations are executed by which tests. Any tests that fail with no

mutants enabled are removed. Total test time is monitored in this

step. Next, the algorithm runs one test per mutant to determine if

the mutation is lethal.

ORIG-MUTANT-SCORE()

// Return ratio of killed mutants to all mutants

 GENERATE-META-MUTANT()

 // surviving mutants

 FOR :

 FOR :

 IF NOT

 BREAK

 RETURN (
| | | |

| |
)

At this point, the algorithm has a set of mutants that have

survived so far. The tests are considered from fastest to slowest

order. For each test, the mutants that are covered by the test are

evaluated in TEST-KILLS-MUTANTS. The TEST-KILLS-MUTANTS

procedure begins by assuming that the test will pass with all

mutants enabled; if not, it recurses on the subsets to find out

which mutants are killed by the test.

Figure 5 Mutant-Score algorithm

3. EVALUATION
We performed experiments on a Dell OptiPlex 990 with an eight

core processor (3.4GHz), 16GB of RAM running Microsoft

Windows version 7.0 Enterprise.

We worked with a subset of the SQL Anywhere source code

related to query processing (scanning, parsing, optimization,

scalar expressions and query execution). The subset we selected

was over 400,000 lines of code (including comments and

whitespace).

Table 1 Mutations and their outcome

 Count Covered Killed Lethal Pass

Function 13,563 75.6% 69.4% 41.1% 30.6%

Condition 35,680 74.8% 65.6% 34.9% 34.4%

Switch 1,176 78.1% 69.0% 34.1% 31.0%

Case 7,528 55.7% 46.1% 27.4% 53.9%

Default 955 24.2% 18.8% 7.9% 81.2%

Total 58,902 71.8% 63.3% 34.9% 36.7%

We applied the mutation operators to every statement in the

selected subset that qualified, giving 58,902 mutations. Table 1

shows how many mutations were created by each mutation

operator in total along with the percent covered by tests, killed (by

a server crash, test timeout, or test failure) or not killed by the test

suite (Pass). It also shows the percent of lethal mutations (killed

by the cheapest covering test).

We used a single test suite of 617 tests with a total sequential

running time of 36 minutes executing on the unmodified system

 . Most of the tests are quite cheap (median 0.33s, mean 3.5s) but

about 10% take over 20s and 8 tests take between one and two

minutes. The tests comprise over 7 million lines of test code

(median of 3761 lines per test) and these tests cover 158,676 of

the 235,760 statements in the selected code subset (67%).

In the proposed algorithm, we stop evaluating a mutation as soon

as it is killed by any test in the suite. For the purposes of

evaluation, we evaluated all mutations for each test so that we

could find out how many mutations were killed by each test. Each

test was executed with a timeout set to twice the run time of the

test on the unmodified system.

The original test stream that we work with is normally run in a

single sequential stream. This under-uses machine resources on

multi-core machines. We modified the test system to run in

parallel, with one meta-mutant running and one test being

executed per stream. This allowed us to maximize machine

resources. We execute each meta-mutant as a separate process

with separate data files so that test streams do not interfere.

3.1 Results

3.1.1 Test Time with Proposed Improvements
The original test time with the unmodified system was 14.8

minutes. If we do not use the suggested improvement of testing

multiple mutants per trial, we would need an additional 42,214

trials of the entire test suite to prove that each individual mutation

was not killed by the test suite (or, alternatively that our

assumption was wrong and it was killed). This would require an

additional 432.8 days of test execution time, which is not feasible.

We were not able to directly time the execution time with each of

the proposed enhancements enabled or disabled. Instead, we

simulate the algorithm using the recorded outcome for each

(test,mutant) pair, using the original test time as an estimate of the

execution time. This is at most out by a factor of 2 due to our

timeout rules

Table 2 Run Time (hours) With Proposed Improvements

 Lethal Mutation Step

O
rd

er
in

g
 No Yes

No 414.7 54.5

Yes 49.1 34.2

The total test time with all three improvements is estimated to be

34.2 hours when running in a concurrent suite.

We executed the mutant test framework with all proposed

enhancements and found a run time of 65.1 minutes to detect

lethal mutations and 21.3 hours to evaluate which mutations were

killed by the test suite (this was faster than the predicted time of

34.2 hours because the simulated time predicts more server

restarts than were required).

3.1.2 Mutation Score vs. Coverage Adequacy
We are very interested in comparing the mutation score to

statement coverage. Figure 6 shows one point for each test with

the statement coverage of the test on the X-axis (this is percentage

MUTANT-SCORE()

// Return ratio of killed mutants to all mutants

 GENERATE-META-MUTANT()

 MUTANT-COVERAGE(, T)

 // surviving mutants

 FOR : // kill lethal mutations

 IF (
):

 FOR ORDER-BY TEST-TIME :

 - -
 TEST-KILLS-MUTANTS ()

 RETURN (
| | | |

| |
)

TEST-KILLS-MUTANTS ()

// Return set of mutants killed by test

 IF :

 RETURN

 IF | | :

 RETURN

 TEST-KILLS-MUTANTS ()

 TEST-KILLS-MUTANTS ()

 RETURN

of total statements executed by the test). On the Y-axis, we plot

the mutation score for the test.

We observe that there is some correlation between coverage and

mutation score. This is not surprising, since mutants can only be

killed if the corresponding code is executed. However, the

relationship is far from linear (error is 0.17). Indeed, we see

that there are many tests that execute a significant percentage of

the statements (up to 30%) but yet kill very few mutants.

We are also interested in the behavior of mutation testing

compared to coverage testing when looking at the cumulative

adequacy score as tests are executed.

Figure 6 Mutation Score vs. Statement Coverage Percent

Figure 7 compares cumulative statements coverage and mutation

score as tests are executed. To make comparison simpler, both are

divided by the adequacy score for the test suite after executing all

tests. We see that statement coverage increases very quickly to

nearly 56% of the maximum coverage after the first five tests. It

takes 203 tests before the mutation score reaches the same level.

There is a slower increase with the mutation adequacy, but it also

increases quickly at the beginning.

Figure 7 Coverage and Mutation Adequacy Over Time

4. CONCLUSIONS
Mutation testing has been proposed as a general mechanism to

assess the adequacy of test suites. Previous studies with small to

medium sized programs have shown that mutation outperforms

coverage-based adequacy measures at comparing test suites.

However, there are high costs associated with mutation testing as

proposed in the literature. These costs are excessive and prohibit

the techniques from being used with large, complex software

systems such as database servers.

In our work, we build on other proposed improvements to scale

mutation testing to larger systems and larger test suites. We

described three proposals to reduce the overall costs:

1. Detect and remove lethal mutations.

2. Order tests by expected running time to kill mutants

efficiently.

3. Enable sets of mutants and assume independence to

limit testing of mutants that are not killed by a test.

We used these proposals to implement an algorithm and combined

it with practical ideas such as running the test streams in parallel

to maximize the benefit of multi-core machines. With these

improvements, the human, machine, and time resources needed to

perform mutation testing are acceptable: compilation is not

noticeably slower; total test time is significant at 21.4 hours, but it

is feasible and could be reduced further with more hardware

resources for concurrency.

5. ACKNOWLEDGMENTS
Early feedback from other members of the SQL Anywhere Query

Processing group was invaluable, especially detailed suggestions

from Daniel J. Farrar. We would also like to thank the anonymous

reviewers for their helpful and insightful suggestions.

6. REFERENCES
[1] Hardik Bati, Leo Giakoumakis, Steve Herbert, and

Aleksandras Surna. 2007. A genetic approach for random

testing of database systems. In Proceedings of the 33rd

international conference on Very large data bases (VLDB

'07). VLDB Endowment 1243-1251.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints

on Test Data Selection: Help for the Practicing

Programmer. Computer 11, 4 (April 1978), 34-41.

DOI=http://dx.doi.org/10.1109/C-M.1978.218136

[3] R.J. Lipton, “Fault Diagnosis of Computer Programs,”

student report, Carnegie Mellon Univ., 1971.

[4] Yue Jia and Mark Harman. 2011. An Analysis and Survey of

the Development of Mutation Testing. IEEE Trans. Softw.

Eng. 37, 5 (September 2011), 649-678. DOI=

http://dx.doi.org/10.1109/TSE.2010.62

[5] David Schuler, Valentin Dallmeier, and Andreas Zeller.

2009. Efficient mutation testing by checking invariant

violations. In Proceedings of the eighteenth international

symposium on Software testing and analysis (ISSTA '09).

ACM, New York, NY, USA, 69-80. DOI=

http://doi.acm.org/10.1145/1572272.1572282

[6] Roland H. Untch. 1992. Mutation-based software testing

using program schemata. In Proceedings of the 30th annual

Southeast regional conference (ACM-SE 30). ACM, New

York, NY, USA, 285-291.

DOI=http://doi.acm.org/10.1145/503720.503749

R² = 0.1696

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0% 10% 20% 30% 40%

P
er

ce
n

t
o

f
M

u
ta

n
ts

 K
il

le
d

Percent of Statements Executed

0%

20%

40%

60%

80%

100%

0 200 400 600

P
er

ce
n

t
o
f

M
a
x

im
u

m

Number of Tests Executed

Statements Covered Killed Mutants

http://dx.doi.org/10.1109/TSE.2010.62
http://doi.acm.org/10.1145/1572272.1572282

	1. INTRODUCTION
	1.1 Mutation Testing
	1.2 Challenges of Testing Database Servers
	1.3 Mutation Testing for Database Systems

	2. APPROACH
	2.1 Mutation Operators
	2.2 Generating the Mutants
	2.3 Notation
	2.4 Mutation Coverage
	2.5 Running a Test
	2.6 Simplifying Assumptions
	2.6.1 Independence of Mutations
	2.6.2 Test failures do not Corrupt State
	2.6.3 Tests Deterministically Find Faults

	2.7 Original Mutant Testing Algorithm
	2.8 Proposed Improvements
	2.8.1 Lethal Mutations
	2.8.2 Test Ordering
	2.8.3 Test Independent Mutations Simultaneously

	3. EVALUATION
	3.1 Results
	3.1.1 Test Time with Proposed Improvements
	3.1.2 Mutation Score vs. Coverage Adequacy

	4. CONCLUSIONS
	5. ACKNOWLEDGMENTS
	6. REFERENCES

