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ABSTRACT 

Testing consumes significant human and machine resources, 

especially for large, complex systems such as database servers. 

While a variety of testing approaches have been proposed to 

improve the efficiency of the testing process, it is difficult to 

evaluate these approaches. Mutation testing has been proposed as 

a way to assess the adequacy of a test suite, assigning a score that 

can be used to compare testing approaches. While promising, 

serious obstacles appear to prevent mutation testing with large 

software systems. Recent advances in mutation testing have 

scaled to medium-sized programs of around 100,000 lines of code 

but to our knowledge there are no reported studies working with 

large systems with millions of lines of code and other features of 

database systems that complicate testing. In this paper we explore 

using mutation testing on a database server to evaluate its 

suitability for comparing test suites or testing approaches.  

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging – testing 

tools 

General Terms 

Reliability, Experimentation. 

Keywords 

Mutation testing, database servers. 

1. INTRODUCTION 
When developing software systems, it is important to include tests 

that verify that the system as implemented meets its requirements. 

Database servers are complex and large software products, and 

testing them requires significant human and machine resources. In 

order to maximize the effectiveness of these resources, a number 

of test generation approaches have been suggested such as random 

query generation or genetic algorithms. While these approaches 

are intriguing, it is difficult to compare these testing approaches in 

order to decide where to invest testing effort. 

When evaluating a test suite to assess the reliability of a software 

system, we would like to know how effective the suite is at 

detecting faulty versions of the system. We would like to define 

an adequacy criteria that ranks test suites based on their capability 

of detecting faults in the system under test. This adequacy criteria 

can be used to direct testing effort towards developing more 

useful tests; it can also be used for test suite minimization, 

offering a way to reduce the number of tests executed by skipping 

those that don’t improve the adequacy metric. 

One direct approach to evaluating test adequacy is to measure 

how many faults the test suite can detect. For example, we can 

monitor which tests detect faults introduced accidentally during 

development cycles before the tests suites were executed. Test 

suites that routinely detect more of these natural faults may be 

considered superior.  

Natural faults are inconvenient for comparing testing approaches. 

Fortunately, there are relatively few natural faults, even during 

early development periods. This relatively small number makes it 

impossible to draw conclusions of any significance. Further, 

natural faults would require working with multiple versions of the 

system with the practical complications of a longitudinal study. 

Code coverage is another approach that ranks test suites on how 

thoroughly they execute the system under test (SUT). Coverage 

can be measured in various ways (statement, basic block, code 

paths). While coverage comparison is a natural approach based on 

the fact that a test cannot detect a fault in code that it does not 

execute, coverage testing fails to consider how effective the test is 

at finding possible faults in the code that is covered. Merely 

executing code without carefully probing the system behavior will 

not detect subtle faults. 

An alternative to natural faults is to artificially generate incorrect 

versions of the system by fault seeding. With this approach, errors 

are introduced and test suites are evaluated on their ability to 

detect the faults. While these faulty versions can be generated by 

hand, an early paper by Lipton [3] suggested using mutation 

operators to automatically generate faulty versions of a program. 

Mutation testing has a long history of research for evaluating the 

adequacy of a test suite. However, there are some practical 

obstacles in applying the proposed techniques to a large and 

complex system such as a database server. In the remainder of this 

paper, we describe these obstacles and propose solutions. We 

evaluate these solutions experimentally using the SAP Sybase 

SQL Anywhere database server as a system under test. 

1.1 Mutation Testing 
Mutation testing evaluates the effectiveness of a test suite for 

detecting incorrect programs. While there are infinitely many 

incorrect programs, mutation testing focuses on those that are 

“close” to the correct version. A few mutation operators are 

defined. Each operator modifies the source code for a program   

by insertion, deletion or replacement. For example, one mutation 

operator could change the and operator (&&) into or (||). A 

mutant    is generated by applying a mutation operator at a 

specific location in the source code and compiling the modified 

source. A test suite is said to kill a mutant    if it contains a test 

that passes when run with   and fails when run with   .  
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The mutation testing process counts the number of mutants killed 

by a test suite to give a mutation score. When the mutation score 

is used as an adequacy measure (for example, tests are created 

until all mutants are killed), we must consider a complication of 

equivalent mutants. A mutant may be functionally equivalent to 

the original program even though syntactically different. In this 

case, it is impossible to generate a test that kills the mutant. This 

gives an adequacy criteria that cannot be satisfied by any test 

suites.  

The issue of equivalent mutants is challenging because in general 

it is undecidable whether two programs are equivalent. However, 

the issue is not important when comparing two test suites (both 

will have the same denominator (total mutants). 

 

 

Figure 1 General Approach of Mutation Testing 

Besides the issue of equivalent mutants, there are two significant 

costs to the mutation testing process. First, generating the mutants 

as separate programs requires a separate compile step for each 

mutant created. Depending on the number of mutation operators 

and the size of the source program, the compilation costs may be 

prohibitive. For our study, this would require over a terabyte of 

storage for 58,902 mutant binaries. Second, testing the mutants 

requires running the test suite on each mutant until a test fails. For 

our environment, this would require at least 25,332 hours. 

1.2 Challenges of Testing Database Servers 
Given the obstacles to using mutation testing on large systems, it 

would be much simpler to use some coverage-based adequacy 

criteria. This could either be statement-coverage or a more 

targeted definition. For example, Bati, Giakoumakis, Herbert and 

Surna [1] measured the number of unique function combinations 

(call from function to function) in order to compare different 

testing methods. 

Coverage based adequacy metrics are relatively easy to compute 

and they are commonly used for test case selection, prioritization 

and minimization. However, developers of SQL Anywhere have 

had serious concerns about using code coverage by itself as an 

adequacy measure. These developers are reluctant to remove a test 

from a suite even if it is redundant according to coverage metrics. 

Experience with customer-reported software faults contributes to 

this reluctance to use coverage-based adequacy metrics for test 

suite minimization. Usually these reported faults in shipping 

software occur in code locations that are in fact executed by the 

test suites. The coverage-based adequacy metrics show there is a 

good level of testing for the affected code, yet software faults are 

occasionally missed and shipped to customers.  

Database systems have a number of characteristics that may 

impact the use of coverage-based test adequacy measures. In 

addition to their size and complexity, database servers pose 

particular testing challenges: 

1. Self-Management Features. Modern database servers 

adapt their processing to the current conditions. This 

adaptation leads to multiple internal states that need to 

be tested in combination. Tests that verify desired 

properties of the system may need to be repeated with 

different internal states. 

2. Relational Equivalence. A DML statement can be 

transformed into a number of different semantically 

equivalent access plans. While logically equivalent, 

these different plans execute different code paths. Tests 

that verify that correct answers are returned may miss a 

software fault that affects only rarely used physical 

operators (or combinations of operators) leading to 

intermittent failures. Alternatively, tests may miss 

flaws in the cost model or query optimizer that lead to 

the selection of sub-optimal plans. These types of faults 

can be expensive to detect as they may require large 

data sets and queries to explore the cost model fully.  

3. Concurrency. Database systems often manage 

concurrent requests from different client applications, 

and they also use intra-query parallelism to execute 

individual requests. Concurrency control primitives 

need to be tested; further, concurrent execution 

introduces more interactions that need to be considered 

and tested. 

These characteristics mean that code within database statements 

needs to be tested in a number of different configurations. 

Coverage based adequacy measures don’t appear to capture this 

requirement and this leads to concerns for using these metrics to 

compare testing approaches. 

1.3 Mutation Testing for Database Systems 
Mutation testing offers the possibility of a more refined adequacy 

criteria than coverage based metrics. However, the apparently 

prohibitive costs of the general mutant testing approach have led 

to some concerns as to whether it can scale to large software 

systems.  

In this paper, we investigate whether mutation testing can be 

applied to a database system, and evaluate the benefits of using 

mutation adequacy measures. We use recent advances in mutation 

testing and introduce three new techniques that allow us to 

compute the mutation score for a test suite in a reasonable time 

and space budget. 

2. APPROACH 

2.1 Mutation Operators 
We define the following mutation operators: 

 Function. Applies to all methods and C-style functions. 

When enabled, skip the contents of the function. For 

functions that do not return a value, this is equivalent to a 

programmer forgetting to call a function. For those that do 

return values (directly or through references), this mutation 

returns uninitialized memory. 

 Condition. Applies to the condition in for, while, and if 

statements. When enabled, evaluate a mutated condition. 



 

 

 Switch. Applies to all switch statements. When enabled, 

add one to the expression. 

 Case. Applies to all case statements within a switch. 

When enabled, skips the contents of the case (this is 

equivalent to a programmer forgetting to include a case 

statement for a value. 

 Default. Applies to default statements within a switch 

statement. When enabled, skips the default statements.  

A mutation is defined to be a single statement in the source 

program that has been modified by a mutation operator. 

2.2 Generating the Mutants 
For a large number of mutants, compiling a separate copy of the 

program is prohibitive in time and space. Instead, we follow an 

approach suggested by Untch [6] and generate a single program (a 

meta-mutant) that can be dynamically configured at execution 

time to enable any subset of mutations. With this approach, only 

one compilation step is needed, and only one copy of the 

executable program is needed. 

The source code is modified to execute the original code unless 

the mutation is enabled. For example, in Figure 2, the original 

source line A would be changed to the line in B. Here, the 

mutation_on function checks the array position for this 

mutation (123 in this example) and returns true if it is enabled. 

A:if( len > 0 ) 

B:if(mutation_on(123) ? (len>=0):(len>0) ) 

Figure 2 Example of Mutation Insertion 

At test time, the mutation test driver enables the desired 

mutation(s) and runs tests from the test suite. 

Compiling the meta-mutant requires slightly more time and space 

than the original program, but it requires significantly less than 

compiling each mutant separately.  

2.3 Notation 
Given an original system   and a set   of mutations that can 

either be enabled or suppressed, we use     to refer to the meta-

mutant system with the set       mutations enabled. A special 

case with the empty set     gives     representing the meta-

mutant with no mutations enabled. Semantically, this is equivalent 

to the original system   but it is different because of the extra 

checks for each mutation to see if it is enabled. 

Given a test   , we say that     kills     if    fails when executed 

with     but passes with     . In this case, we write          . 

Given a test suite          , we say that   kills    if there is 

some test      where          . In this case, we write 

        . 

2.4 Mutation Coverage 
The general mutation testing approach executes each test in the 

suite on each mutant (until the mutant is killed). However, not 

every mutant is executed by every test. If a test does not execute 

the code affected by a mutation, running the test on the mutant is 

wasted work. To avoid this waste, we follow an approach used by 

Schuler, Dallmeier and Zeller [5] and we use statement coverage 

information to help direct our testing efforts.  

At program startup, a shared memory array (COV) is created with 

one byte per mutation location. The mutation_on function sets 

the corresponding byte to one, indicating the mutation location 

was executed by the test. 

The mutation test driver uses a preliminary step (MUTANT-

COVERAGE) to evaluate coverage by running each test in the suite 

once with no mutations enabled. The driver clears COV to zero 

before each test and reads the array after executing the test. We 

say that a test   covers mutation   if, during this preliminary step, 

the test executed the code location affected by  . During this 

step, tes execution time is recorded as well. 

2.5 Running a Test 
We define the function                to evaluate whether a test 

 passes when executing on the system    with the mutations in 

 enabled. 

In order to evaluate the test on the modified system, we first 

enable the desired mutations then start the test, waiting for a 

maximum amount of time. In our experiments, we limited the test 

run time to be two times the original test time. This approach 

prevents an endless loop (resulting from a mutation) from halting 

testing: such loops are detected as failures. 

 

Figure 3 Determining if a test passes with mutants   enabled 

If a test resulted in a system crash or timeout, we restart the 

system to a known state. Otherwise, we keep the system running. 

As described below in Section 2.6.2, this allows us to quickly 

process tests without restarting the server, but it does rely on an 

assumption that future test behaviour is not affected by this test 

execution. 

2.6 Simplifying Assumptions 
We make the following simplifying assumptions. While these 

assumptions are not true in general, they allow us to greatly 

reduce the effort of mutation testing. 

2.6.1 Independence of Mutations 
If   is a set of mutants with       then we assume that   

kills   if and only if it kills   or  : 

                        

This assumption allows us to infer that if a test does not kill   , 

then it would not kill any subset of  . 

In general this assumption is not true because mutations may 

interact. However, as we will show this assumption significantly 

reduces testing cost. 

In order to evaluate the impact of this assumption, we chose 50 

tests and selected 1000 mutants for each test. For each test, we 

executed the test once for each individual mutant enabled, then 

with 500 groups of size 2, 100 groups of 10, 10 groups of 100 and 

1 time with all 1000 mutants enabled. The independence 

assumption held for all but 104 of the 30,550 groups (0.34%). 

Only 12 of these cases showed a failure with a group where none 

of the individual mutants showed a failure. The other 92 cases had  

PASSES (     ) 

// Returns true if the test passes on system   

 Enable only the mutations in   

 Start test   on      

 Wait at most 2* original test time 

 IF test passed 

  RETURN TRUE 

 IF              OR TIMEOUT    

         -            
 RETURN FALSE 

 



 

 

 

Figure 4 Original mutation testing algorithm 

a failure with an individual mutant that did not appear when the 

mutant was enabled in a group with other mutants.  

2.6.2 Test failures do not Corrupt State 
A database server is usually expected to be in the running state. If 

the system needs to be restarted to test each mutant, a significant 

amount of time will be spent in startup and shutdown code (we 

measure about 11 seconds per restart. The median test time is 0.4 

seconds so this is a significant overhead. 

When running a test on a mutant, there are four possible 

outcomes: 

 Crash. The system may crash or fail self-checks (assertions) 

 Timeout. The test may take significantly longer to run 

 Fail. The system may return an answer that the test rejects 

 Pass. The test does not report a failure (mutant survives) 

When the system crashes or fails self-checks, it is not possible to 

run further tests without a restart. If a test times out, then it could 

be due to an endless loop or other ongoing execution within the 

server that is difficult to detect from the test system. In this case it 

is best to restart before continuing testing. 

When a test executes on a database server without a crash (either 

passing or reporting a failure), then it is possible that the internal 

state of the server has been corrupted in a way not detected by the 

O/S or self-checks. Nevertheless, we assume that this does not 

happen so that we can execute further tests with the same running 

server, saving the cost of restarting. In order to eliminate 

obviously corrupt state, the framework uses a simple “ping” query 

to ensure the server is minimally responsive and restarts the test 

process and connections.  

2.6.3 Tests Deterministically Find Faults 
An underlying assumption of mutation testing (and also coverage 

metrics) is that a test behaves deterministically, executing the 

same server code paths and either detecting a fault (reporting a 

test failure) or passing. In reality, we know that the behaviour of 

the database server is non-deterministic due to self-management 

features and cost-based plan selection. Further, some of the 

mutant operators lead to non-deterministic faults that may be 

equivalent to the original program during some executions while 

failing in others due to the contents of uninitialized memory. 

When evaluating the effect of the independence assumption 

(Section 2.6.1), we noted the interesting fact that some mutation 

groups passed a test where individual mutants in the group failed. 

It is possible this could occur due to mutant interaction where two 

wrongs (mutations) make a right. Another possibility is that there 

is a non-deterministic behaviour in the server code that causes a 

test to have different behaviour on different executions. For the 

104 cases that violate the independence assumption, we executed 

the test case 10 times for each of the mutants that were included in 

the 104 groups. We found there were 8 mutants that gave non-

deterministic answers, explaining 14 of the 104 violations of the 

independence assumption. Test determinism is an important 

assumption but it requires further investigation to understand how 

well it holds in database systems with mutation testing. 

2.7 Original Mutant Testing Algorithm 
The original mutant testing algorithm defined by Lipton [3] 

executes the test suite for each mutant until one of the tests in the 

suite detects a failure. This algorithm is shown in Figure 4. 

 

2.8 Proposed Improvements 
A number of improvements have been suggested including using 

mutant schemata [6] like our meta-mutant and running only tests 

that execute the code modified by a particular mutant [5]. 

We propose the following improvements that we believe have not 

been described in the literature: 

2.8.1 Lethal Mutations  
Some mutations are so severe that any test that executes the 

mutated code will cause a crash, timeout, or test failure. We 

propose an algorithm that checks for each mutant whether the 

cheapest test that executes the mutated code passes. If not, we can 

quickly kill the mutant using the cheapest possible test. 

2.8.2 Test Ordering 
Some mutants are not completely lethal but they are still killed by 

a substantial portion of tests. We propose ordering test execution 

so that cheaper tests are executed first, in the hopes that they will 

kill mutants quickly. 

2.8.3 Test Independent Mutations Simultaneously 
We observe that individual tests generally do not kill many 

mutants (we measure an average of 88% of mutants executed by a 

test do not result in failure). If the mutants are independent and we 

could enable multiple mutants that are not killed by a test, we can 

avoid a separate trial for each of the mutants in the set.   

We use the independence assumption to infer that 

              ⋀                    . This means that if we 

test the meta-mutant     with a test   and the test passes, we then 

infer that the test would pass with any of the individual mutants 

enabled and there is no need to execute the test on any subset of 

 . On the contrary, if test   fails when executed with    then we 

are not sure which fault(s) cause the failure.  

We propose using this simplifying assumption by using a 

recursive procedure TEST-KILLS-MUTANTS (      ) to find all of 

the mutants that test   kills. The procedure starts assuming the test 

will pass with all  mutants enabled; if so, the test kills none of 

them. Otherwise, if the set is a singleton, the test kills the 

individual mutant. 

If   contains more than one element, we divide   into two 

subsets       of approximately equal size and investigate the 

behavior of the test with respect to the subsets. 

We use the algorithm in Figure 5 to compute the mutation score 

for a test suite   with a system  . The algorithm begins by 

compiling a meta-mutant. In our implementation, we applied the 

five mutation operators at every statement in the subject code that 

met the operator properties. Next, the algorithm executes each test 

one time with all mutants disabled, monitoring which mutant 

locations are executed by which tests. Any tests that fail with no 

mutants enabled are removed. Total test time is monitored in this 

step. Next, the algorithm runs one test per mutant to determine if 

the mutation is lethal. 

ORIG-MUTANT-SCORE(   ) 

// Return ratio of killed mutants to all mutants 

       GENERATE-META-MUTANT( ) 

      // surviving mutants 

 FOR      : 

  FOR     : 

   IF NOT                   

             
    BREAK 

 RETURN (
| | | |

| |
) 



 

 

At this point, the algorithm has a set   of mutants that have 

survived so far. The tests are considered from fastest to slowest 

order. For each test, the mutants that are covered by the test are 

evaluated in TEST-KILLS-MUTANTS. The TEST-KILLS-MUTANTS 

procedure begins by assuming that the test will pass with all 

mutants enabled; if not, it recurses on the subsets to find out 

which mutants are killed by the test. 

 

Figure 5 Mutant-Score algorithm 

3. EVALUATION 
We performed experiments on a Dell OptiPlex 990 with an eight 

core processor (3.4GHz), 16GB of RAM running Microsoft 

Windows version 7.0 Enterprise. 

We worked with a subset of the SQL Anywhere source code 

related to query processing (scanning, parsing, optimization, 

scalar expressions and query execution). The subset we selected 

was over 400,000 lines of code (including comments and 

whitespace). 

Table 1 Mutations and their outcome 

 Count Covered Killed Lethal Pass 

Function 13,563 75.6% 69.4% 41.1% 30.6% 

Condition 35,680 74.8% 65.6% 34.9% 34.4% 

Switch 1,176 78.1% 69.0% 34.1% 31.0% 

Case 7,528 55.7% 46.1% 27.4% 53.9% 

Default 955 24.2% 18.8% 7.9% 81.2% 

Total 58,902 71.8% 63.3% 34.9% 36.7% 

 

We applied the mutation operators to every statement in the 

selected subset that qualified, giving 58,902 mutations. Table 1 

shows how many mutations were created by each mutation 

operator in total along with the percent covered by tests, killed (by 

a server crash, test timeout, or test failure) or not killed by the test 

suite (Pass). It also shows the percent of lethal mutations (killed 

by the cheapest covering test). 

We used a single test suite of 617 tests with a total sequential 

running time of 36 minutes executing on the unmodified system 

 . Most of the tests are quite cheap (median 0.33s, mean 3.5s) but 

about 10% take over 20s and 8 tests take between one and two 

minutes. The tests comprise over 7 million lines of test code 

(median of 3761 lines per test) and these tests cover 158,676 of 

the 235,760 statements in the selected code subset (67%). 

In the proposed algorithm, we stop evaluating a mutation as soon 

as it is killed by any test in the suite. For the purposes of 

evaluation, we evaluated all mutations for each test so that we 

could find out how many mutations were killed by each test. Each 

test was executed with a timeout set to twice the run time of the 

test on the unmodified system. 

The original test stream that we work with is normally run in a 

single sequential stream. This under-uses machine resources on 

multi-core machines. We modified the test system to run in 

parallel, with one meta-mutant running and one test being 

executed per stream. This allowed us to maximize machine 

resources. We execute each meta-mutant as a separate process 

with separate data files so that test streams do not interfere. 

3.1 Results 

3.1.1 Test Time with Proposed Improvements 
The original test time with the unmodified system was 14.8 

minutes. If we do not use the suggested improvement of testing 

multiple mutants per trial, we would need an additional 42,214 

trials of the entire test suite to prove that each individual mutation 

was not killed by the test suite (or, alternatively that our 

assumption was wrong and it was killed). This would require an 

additional 432.8 days of test execution time, which is not feasible.  

We were not able to directly time the execution time with each of 

the proposed enhancements enabled or disabled. Instead, we 

simulate the algorithm using the recorded outcome for each 

(test,mutant) pair, using the original test time as an estimate of the 

execution time. This is at most out by a factor of 2 due to our 

timeout rules 

Table 2 Run Time (hours) With Proposed Improvements 

  Lethal Mutation Step 

O
rd

er
in

g
  No Yes 

No 414.7 54.5 

Yes 49.1 34.2 

 

The total test time with all three improvements is estimated to be 

34.2 hours when running in a concurrent suite. 

We executed the mutant test framework with all proposed 

enhancements and found a run time of 65.1 minutes to detect 

lethal mutations and 21.3 hours to evaluate which mutations were 

killed by the test suite (this was faster than the predicted time of 

34.2 hours because the simulated time predicts more server 

restarts than were required). 

3.1.2 Mutation Score vs. Coverage Adequacy 
We are very interested in comparing the mutation score to 

statement coverage. Figure 6 shows one point for each test with 

the statement coverage of the test on the X-axis (this is percentage 

MUTANT-SCORE(   ) 

// Return ratio of killed mutants to all mutants 

       GENERATE-META-MUTANT( ) 

       MUTANT-COVERAGE(    , T) 

      // surviving mutants 

 FOR      : // kill lethal mutations 

                              

  IF       (    
   ): 

           
 FOR      ORDER-BY TEST-TIME   : 

                 -      -                  
      TEST-KILLS-MUTANTS (       ) 

         

 RETURN (
| | | |

| |
) 

 

TEST-KILLS-MUTANTS (      ) 

// Return set of mutants killed by test   

 IF              :  

  RETURN   

 IF | |   :  

  RETURN   

                
     TEST-KILLS-MUTANTS (       ) 

        TEST-KILLS-MUTANTS (       ) 

 RETURN    



 

 

of total statements executed by the test). On the Y-axis, we plot 

the mutation score for the test.  

We observe that there is some correlation between coverage and 

mutation score. This is not surprising, since mutants can only be 

killed if the corresponding code is executed. However, the 

relationship is far from linear (   error is 0.17). Indeed, we see 

that there are many tests that execute a significant percentage of 

the statements (up to 30%) but yet kill very few mutants. 

We are also interested in the behavior of mutation testing 

compared to coverage testing when looking at the cumulative 

adequacy score as tests are executed. 

 

Figure 6 Mutation Score vs. Statement Coverage Percent 

Figure 7 compares cumulative statements coverage and mutation 

score as tests are executed. To make comparison simpler, both are 

divided by the adequacy score for the test suite after executing all 

tests. We see that statement coverage increases very quickly to 

nearly 56% of the maximum coverage after the first five tests. It 

takes 203 tests before the mutation score reaches the same level. 

There is a slower increase with the mutation adequacy, but it also 

increases quickly at the beginning.  

 

 

Figure 7 Coverage and Mutation Adequacy Over Time 

4. CONCLUSIONS 
Mutation testing has been proposed as a general mechanism to 

assess the adequacy of test suites. Previous studies with small to 

medium sized programs have shown that mutation outperforms 

coverage-based adequacy measures at comparing test suites. 

However, there are high costs associated with mutation testing as 

proposed in the literature. These costs are excessive and prohibit 

the techniques from being used with large, complex software 

systems such as database servers. 

In our work, we build on other proposed improvements to scale 

mutation testing to larger systems and larger test suites. We 

described three proposals to reduce the overall costs: 

1. Detect and remove lethal mutations. 

2. Order tests by expected running time to kill mutants 

efficiently. 

3. Enable sets of mutants and assume independence to 

limit testing of mutants that are not killed by a test. 

We used these proposals to implement an algorithm and combined 

it with practical ideas such as running the test streams in parallel 

to maximize the benefit of multi-core machines. With these 

improvements, the human, machine, and time resources needed to 

perform mutation testing are acceptable: compilation is not 

noticeably slower; total test time is significant at 21.4 hours, but it 

is feasible and could be reduced further with more hardware 

resources for concurrency. 
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