
Extending XData to Kill SQL Query Mutants in the Wild

Bikash Chandra, Bhupesh Chawda, Shetal Shah, S. Sudarshan, Ankit Shah

Computer Science and Engg. Dept.
Indian Institute of Technology Bombay, India

{bikash2911,bhupeshchawda}@gmail.com {shetals,sudarsha,ankitshah10}@cse.iitb.ac.in

ABSTRACT

SQL queries are usually tested for correctness by execut-
ing them on one or more datasets, to see if they give the
desired results on each dataset. Erroneous queries are of-
ten the result of small changes, or mutations, of the correct
query. Earlier work on the XData system showed how to
generate datasets that kill all mutations in a class of mu-
tations that included join type and comparison operation
mutations. However, the system could not handle a number
of commonly used SQL features.

In this paper we extend the XData data generation tech-
niques to handle features such as null values, string con-
straints, aggregation with constraints on aggregation results,
and a class of subqueries, amongst others. We present a
study of the effectiveness of our data generation approach
for correcting student SQL assignments that were part of a
database course. The datasets generated by XData outper-
form publicly available datasets, as well as manual grading
done earlier by teaching assistants.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms

Algorithms, Experimentation, Verification

1. INTRODUCTION
Queries written in SQL are widely used, but are not ame-

nable to the usual approaches of program verification, since
the queries themselves act as formal specifications, and there
is no separate implementation to compare against. Queries
are instead tested against one or more datasets to check that
they give the desired results. Generation of datasets that
can catch commonly occurring errors is thus key to thorough
testing of SQL queries. A closely related problem is that of
grading SQL assignments, where students can write queries

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

in a variety of different ways, making it hard for graders to
check if a given query is correct. Grading of SQL queries
is usually done by testing the query against one or more
manually created datasets, but databases created in ad hoc
ways often miss a variety of errors.1 Grading by just reading
queries is even more error prone, since graders often miss
subtle mistakes. As an example, when required to write
the query Q below, students may write query Qs, which is
similar enough that a grader can easily miss the difference.

Q: SELECT course.id, course.title

FROM course LEFT OUTER JOIN

(SELECT * from dept WHERE dept.budget > 70000) D

USING (dept_name);

Qs: SELECT course.id, course.title

FROM course LEFT OUTER JOIN dept USING (dept_name)

WHERE dept.budget > 70000;

These queries are not equivalent, since they give different
results on departments with budget less than 70000.

Most incorrect queries are small syntactic deviations of the
correct one and can be thought of as mutants of the correct
query/program. Specifically, a mutation is single syntactic
correct change of the original query; and a mutant is the
result of one of more mutations on the original query. A
dataset kills a mutant if the original query and the mutant
give different results on the dataset. A test suite consisting
of multiple datasets kills a mutant if at least one of the
datasets kills the mutant.

Data generation can be used in two distinct ways: (a) to
check if a given query is correct, a tester manually examines
the result of the query on each dataset, and checks if the
result is what was intended, and (b) to check if a given query
is not equivalent to a given correct query, the results of the
given and correct query are compared on each dataset. The
first mode is appropriate for testing database application
queries, while the second is appropriate for grading student
SQL queries. Datasets generated could also potentially aid
in the testing of query optimizers wherein optimizer errors
are viewed as mutations.

In our earlier work on the XData system [9] we described
techniques for data generation targeted at killing of mutants,
which handled several SQL constructs. The techniques de-
scribed in [9] ensured all single mutations in a specific space
of mutations would be killed. The space included mutations
to the join type (between inner join, left and right outer join)
across all equivalent join orders of a given query, mutations

1The Gradiance system provides support for grading SQL
queries by running them against test databases, but does not
provide support for automatic generation of test databases.

of comparison operations (between <,<=,>,>= and <>),
and mutations of aggregation operations (between min and
max, between avg and avg distinct, and between sum and
sum distinct) as long as there are no constraints on the ag-
gregation results.

However, real life SQL queries have a variety of features
that were not handled in [9]. When we used our code on SQL
queries that were part of assignments given in a database
course, we found a number of limitations. These limita-
tions included handling strings constraints, handling aggre-
gate queries with constraints on the aggregate results, and
handling nested subqueries.

In this paper, we describe how we generate test data to
handle such features. For each new feature, for example
strings, we address the following issues, for a query that uses
the feature: (a) how to generate data to handle mutations to
other features, ignoring mutations to the new feature, and
(b) how to detect mutations involving the new feature.

The contributions of this paper include novel data genera-
tion techniques for the following. a) Handling of NULL val-
ues (Section 3). b) Handling of string constraints, including
case sensitive and insensitive comparisons and LIKE con-
straints, and upper() and lower() functions (Section 4). c)
Handling of aggregation with constraints on the aggregate
result (Section 5). d) Handling of subqueries (Section 6). e)
Handling of set operations, date and time datatypes, views
(permanent created using CREATE VIEW, and temporary
created using the WITH clause), and insert/delete/update
queries (Section 7). Although some of our data generation
techniques are not complete, i.e., they may fail to generate
some datasets on some complex queries, our experimental
results show that they work very well in practice.

Our experimental study (Section 8), using as a benchmark
a set of assignments given as part of a database course at IIT
Bombay, show that the extensions described in this paper
were critical for handling many queries, and the datasets we
generated overall outperformed publicly available datasets,
and manual grading by TAs.

2. RELATED WORK AND BACKGROUND
In our earlier work called XData [9], we presented tech-

niques for generating test data for killing SQL query mu-
tants. In SQL, a join query can be specified in an order
independent fashion resulting in many equivalent join orders
for a given query. Hence, the number of join type mutations
across all these orders is exponential. XData generates a
linear number of datasets to detect an error (kill mutations)
across different join orderings. For the space of join type,
selection condition, and a particular subset of unconstrained
aggregation mutations (details in [9]), the datasets generated
are complete, i.e., the datasets would kill all single mutations
of the query.

C. de la Riva et al. [4] show how to generate test cases
to kill SQL query mutants, generating constraints based on
SQL coverage rules ([11]) and solving them using a con-
straint solver called Alloy. They consider queries with joins
and where clause conditions. Unlike us, they do consider
disjunctions. However, they do not consider aggregates, sub-
queries, strings and updates.

Qex [13] is a tool for generating input tables and param-
eter values for a given parameterized SQL query using the
SMT solver Z3. The goal of Qex is to generate data so
that the query has a non-empty result. Data generation for

killing mutants is not considered. Olston et al. [7] take a
dataflow program and a database and generate an exam-
ple dataset such that the result of each operator (including
intermediate operators) in the program is non-empty. How-
ever, they do not handle integrity constraints or check for
query correctness.

Emmi et al. [5] describe an approach to test applications
based on the creation of database states and test inputs,
which ensures path coverage. However, they do not address
the problem of testing of queries within the application, nor
do they address mutations.

In the rest of this section, we give some background of
XData [9]. Given a query Q, the XData system [9] gen-
erates multiple datasets, each of which kills one or more
mutations of the query; i.e., on each dataset the given query
returns a result that is different from those returned by each
of the mutations targeted by that dataset. The number of
possible mutations is very large, but the number of datasets
generated is small. To generate a particular dataset, XData
generates a set of constraints, where each tuple in the target
dataset is represented by a tuple of constraint variables. It
then invokes a constraint (SMT) solver, CVC3 [1], to solve
the constraints; the solution defines a dataset on which the
query is to be tested.

The first dataset ensures a non-empty result for Q (which
itself kills several mutations that would give an empty re-
sult on that dataset). The remaining datasets target specific
mutations of Q. Mutations targeted by the techniques in [9]
include join type mutations, selection mutations, and ag-
gregation operation mutations with no constraints on the
aggregation.

To illustrate what constraints are generated for each dataset,
we use the following query Q:
SELECT *

FROM course INNER JOIN dept USING (dept_name)

The first dataset is designed to generate a non-empty re-
sult for Q. Hence we specify that the course and dept

relations each contain 1 tuple, which match on the join at-
tribute. In case more than one tuple is generated for a re-
lation, primary key constraints are enforced by appropriate
CVC3 constraints. Foreign key constraints are enforced by
generating additional tuples, as required, for the referenced
relations. In our example, the join condition between dept

and course is on a foreign key from course referencing dept,
so a tuple generated for dept may already ensure the foreign
key constraint is satisfied, but in general, extra tuples need
to be generated for dept, for each tuple in course.

As explained in [9], to kill a mutation of the inner join to
right outer join, we need a value in dept.dept_name which
does not match any value in course.dept_name, which we
ensure by creating an extra tuple for dept, with CVC3 con-
straints ensuring it has no matching tuples in course.

In this paper, we consider single block SQL queries with
join/outer-join operations and predicates in the where-clause,
and optionally aggregate operations, corresponding to se-
lect/project/join/outer-join queries in relational algebra, with
an optional aggregation operation on top. We also consider
insert/delete/update queries. We allow from and where
clause subqueries, and scalar sub queries. While the sub
query can have unconstrained aggregation operations, we
restrict constrained aggregation to the outer query. We do
not handle subqueries within subqueries. We also make the
same assumptions as in [9], for example that the only con-

straints are primary and foreign key constraints, that join
predicates and selection are conjunctions, etc.

3. HANDLING NULLS
In [9], we did not handle NULLs, since our solver CVC3

does not understand NULL values. We now sketch how we
extend the constraints to handle NULL values.

To model NULLs for text attributes, we enumerate a few
more values in the enumerated type and designate them
NULLs, for example, for an attribute course_id, we enu-
merate values NULL_course_id_1, NULL_course_id_2, etc.

For numeric values, we model NULLs as any integer in a
range of negative values that we define to be not part of the
allowable domain of that numeric value.

For each dataset, we choose which attributes of which tu-
ples are to be made null, and add constraints forcing those
attribute values to take on one of the abovementioned special
values representing NULL. In addition we add constraints to
force all other values to be non null. We also need to enforce
the fact that nulls are not comparable. We do so by choos-
ing different NULL_ values for different constraint variables
that may potentially be assigned a null value, thus implicitly
enforcing an inequality between them.

The capability to generate NULLs enables us to handle
nullable foreign keys, mutation of count to count(*) and ex-
plicit IS NULL checks. If a foreign key attribute fk, is nul-
lable then the corresponding foreign key constraint to CVC3
is that fk is a subset of the corresponding primary key values
or NULL values, allowing CVC3 to assign NULLs to foreign
keys if required; thereby allowing to kill more mutants than
is possible with non nullable foreign keys. (Our implemen-
tation handles multi-attribute foreign and primary keys.) If
the query contains a condition r.a IS NULL, we explicitly
assign (a different) NULL to attribute a for each tuple r[i].
This dataset also kills the mutation of IS NULL to NOT IS
NULL. If the query contains an IS NULL then the dataset
will give a non-empty result whereas the NOT IS NULL
mutant will generate an empty result and vice versa.

More details of how we handle nulls are given in [3].

4. STRING CONSTRAINTS
SQL queries often have equality, inequality constraints on

strings, and pattern matching constraints using the LIKE
operator. Our techniques handle the following class of
string constraints: S1 likeop pattern, S1 relop constant,
strlen(S) relop constant, and S1 relop S2, where S1 and S2
are string variables, likeop is one of LIKE, ILIKE (case in-
sensitive like), NOT LIKE and NOT ILIKE and relop op-
erators are =,<,≤, >,≥, <>, and case-insensitive equality
denoted by ∼=.

4.1 The String Solver
As with NULLs, CVC3 does not support string opera-

tions, and hence we need to solve the string constraints
outside of CVC3. To generate data for a query contain-
ing string and non-string constraints, we first solve string
constraints, get an assignment of values for each string vari-
able and then solve the non-string constraints using CVC3,
to get an overall solution. This two-step solution works
as long as there are no constraints that involve both string
and non-string variables; an example of such a constraint is
one that equates the length of a string variable to an integer

variable. The class of constraints we support does not allow
such constraints between string and non-string variables.

There are several string solvers available, including Hampi
[6], Kaluza [8] and Rex [12]. However we found that Hampi
and Kaluza are rather slow, and while they handle regular
expressions and length constraints, they cannot handle con-
straints such as S1 < S2 which are commonly used. Rex,
though much faster, cannot handle any constraints involv-
ing multiple string variables. Hence we built our own solver
which we describe briefly below:

We first collect the string constraints, namely, selection
conditions on strings, like conditions, and string length con-
straints. We then reduce the number of constraints by re-
moving equality constraints by propagating the constants
the string variable is equated to, replacing the occurrence of
the string variable by that of the constant. This may result
in constraints of the form consti relop constj . If this con-
straint is unsatisfiable, then there is no possible solution to
given set of constraints.

Next, we group variables that depend on each other, i.e.,
if Vi relop Vj then Vi and Vj are in the same group. Then
for each group we construct a graph, where the variables
form the vertices. A constraint of the form Vi < Vj or
Vi ≤ Vj is represented by a directed edge from Vj to Vi

in the graph. We then traverse the graph and collect all
variables/vertices, Vi, . . . , Vk whose outdegree is 0; i.e., that
there is no variable whose value is less than Vi, . . . , Vk and
for each such Vi, find the lexicographically smallest string
that satisfies all the constraints for Vi. We repeat this step
till we have assigned a value to all variables. Note that if
no such Vi exists, i.e., there is a cycle in the graph, then it
implies that all variables in the cycle are equal, if all edges
are ≤, or that the given set of constraints is not satisfiable,
if one of the edges is <.
Handling <> and ∼= comparisons: We handle notEqual
conditions of the kind Vi <> constant and Vi <> Vj such
that Vj is unconstrained, i.e., there are no other string con-
straints constraining the value of Vj . For the constraint
Vi <> consti, we simply ensure that the value assigned to
Vi is not consti. For constraints of the form Vi <> Vj , we
heuristically first find an assignment to the constrained vari-
able, Vi, and then assign a different value of Vj . Similarly,
for Vi ∼= Vj , we find an assignment for Vi, then derive a
value for Vj by changing the case of one of the letters in the
string assigned to Vi.

Handling non-equality constraints where both variables
are constrained is part of future work.
Handling string functions upper and lower : We do not di-
rectly support string functions upper and lower, but com-
monly used queries involving these functions can be rewrit-
ten using ∼=; for example upper(S) = ’ABC’ can be rewrit-
ten as S ∼= ’ABC’, and similarly upper(S) LIKE constant
can be replaced by S ILIKE constant (note that upper(S)
= constant as well as upper(S) LIKE constant are replaced
by false if the constant contains any lower case letters). We
perform such rewriting before the string solver is called.

4.2 Killing String Constraint Mutations
We now discuss data generation to kill mutants of string

conditions.
String constraint mutation: Consider a string con-

straint of the form S1 relop S2, where S1 is a variable (at-
tribute name), S2 could be another variable or a constant.

As in [9], we consider mutations of relop where any occur-
rence of one of {=, <>,<,>,≤,≥} is replaced by another.
In [9], we show that 3 datasets are enough to kill all the
relop mutations. These are the datasets generated for (1)
S1 = S2 (2) S1 > S2 (3) S1 < S2. In addition, to kill
mutations between = and ∼=, we generate two datasets,
one where S1 = S2 and the other where S1 <> S2, but
S1 ∼= S2.

LIKE predicate mutation: We also consider the mu-
tation of the likeop operators where one of {LIKE, ILIKE,

NOT LIKE, NOT ILIKE} is mutated to another. For a
condition S1 likeop pattern, where S1 is an attribute name,
the three datasets given below are sufficient to kill all mu-
tations between the LIKE operators:
Dataset 1 satisfying the condition S1 LIKE pattern.
Dataset 2 satisfying condition S1 ILIKE pattern, but not
S1 LIKE pattern, with pattern modified by changing the
case of one or more characters.
Dataset 3 failing both the LIKE and ILIKE conditions,
generated by replacing one or more characters (other than
% and) in LIKE pattern by different characters.

5. CONSTRAINED AGGREGATION
In [9], we addressed the problem of data generation for

unconstrained aggregation operators. In this section, we
discuss how to extend the earlier techniques to handle con-
straints on the aggregate result.

Aggregation constraints like SUM(r.a) > 20 cannot be
translated into similar CVC3 constraints like SUM(r[i].a) >
20, leaving the number of tuples in r unspecified, since CVC3
requires us to specify how many tuples r has. For example
if r.a is unconstrained, even one tuple suffices, but if r.a is
constrained to be ≤ 5, 5 tuples are required to meet the con-
straint on SUM. Hence, before generating CVC3 constraints
we must (a) estimate the number of tuples n, required to sat-
isfy an aggregation constraint, and (b) translate this number
n to appropriate number of tuples for each base relation so
that the input of the aggregation contains exactly n tuples.

We assume that constraints on aggregation results oc-
cur at the top of a query tree. The query tree may con-
tain joins, but we assume that there are no repeated rela-
tions in the query. Constraints on aggregate values, such
as AVG ∗COUNT = SUM , result in non-linear arithmetic
constraints, and since CVC3 only handles such non-linear
constraints on fixed precision integers, we restrict our atten-
tion to fixed precision rationals.

We now consider how to estimate the number of values
(tuples) needed to satisfy aggregation constraints on an at-
tribute A. For each attribute, A, we collect all aggregation
constraints on A, domain constraints and non-aggregate con-
straints on attribute A, i.e., constraints like CREDITS <

13. These constraints, along with constraints which capture
the invariants between various aggregation operators such
as AVG ∗ COUNT = SUM , MIN ≤ MAX, etc., are then
given to CVC3. Since we are interested in small datasets,
we want the count to be as small as possible. Hence, we
run CVC3 with the count fixed to different values, ranging
from 1 to MAX TUPLES and choose the smallest value of
the count for which CVC3 gives a valid answer.2 We borrow
the idea of calculating the number of tuples, using multiple

2Since, we are interested in small datasets, we set
MAX TUPLES to 32 in our experiments.

tries, for the aggregation constraint from RQP[2]. However,
note that the problem is different here, since, unlike RQP,
we do not know the aggregation value in the query result.

If we have aggregation constraints on multiple attributes
of the same relation, we estimate the smallest possible counts
returned for each attribute which is involved in an aggrega-
tion constraint and then choose the maximum amongst these
counts. The rationale behind this is that if any aggregation
constraint needs n values, then that relation must contain
at least n tuples.

Once we estimate the number of tuples, n, required to
satisfy a given constraint, we then estimate the number of
tuples to be generated for each relation, so that the input to
the aggregation operator is the required number of tuples.
This estimation is done with care, dictated by unique, group
by constraints of the joining attributes of each relation such
that either 1 or n tuples is assigned to any relation; we omit
the algorithm due to lack of space. The algorithm to do so
is given in [3], where we also prove that for the snowflake
schema, with joins only between foreign key and primary
key links, with a few other minor assumptions, a solution
always exists.

The algorithm for determining the number of tuples for
each relation, also determines, for each join/group by at-
tribute, whether the attribute value is unique across tuples,
or the same (duplicated) across all tuples. Note that these
properties are per group.

To generate datasets that satisfy the aggregation con-
straints, we generate appropriate CVC3 constraints, with
the number of tuples in each relation fixed based on the val-
ues computed above, and with constraints that ensure that
for each join/group by attribute, the values are unique or
duplicated as required.

We generate datasets to kill mutations between MIN and
MAX, SUM and SUM DISTINCT, AVG and AVG DIS-
TINCT and COUNT and COUNT(DISTINCT). In [9], we
showed that in many cases, one dataset is sufficient to kill
the above mutations; the dataset contains three tuples such
that two tuples have distinct values on the aggregated at-
tribute, A, and two tuples have the same value of A. In cases
where A is unique the dataset contains only two tuples which
distinct values for A. This technique also works with con-
strained aggregation (a minor change which is required in a
few cases is described in [3]).

6. NESTED SUBQUERIES
We consider nested subqueries in the SQLWHERE clause,

connected by IN, NOT IN, EXISTS, NOT EXISTS, ALL or
ANY clauses, as well as scalar subqueries which return a
single value. For simplicity we assume (a) correlation con-
ditions in the subquery involve a single relation in the outer
query, (b) IN connectives involve attributes from only one
outer relation, and any correlation conditions are on the
same relation, and (c) the depth of nesting is at most 1, i.e.
there are no subqueries within subqueries.

To generate data which satisfies the subquery, we first
generate constraints to create tuples for the outer query re-
sult, ignoring the subquery. For queries with aggregation, as
we saw in Section 5, we may need to create more than one
tuple for some of the relations used in the outer query. We
then generate constraints to generate data for the subquery,
while ensuring the connecting condition is satisfied.

Details of how to handle EXISTS, IN, NOT EXISTS,

NOT IN, ALL/ANY connectives, as well as how to han-
dle scalar subqueries are described in [3]. The negated cases
NOT IN and NOT EXISTS cause some complications, since
there are potentially many ways of ensuring that a subquery
result is empty or does not have a specific value in its re-
sult. For example, for an expression r 1 s, we could ensure
each r tuple has no matching s tuple, or each s tuple has no
matching r tuple; with multiple joins and selections, further
options are possible. It is not possible to express all these
options as a disjunctive condition, and hence we cannot just
generate a single CVC3 constraint covering all these cases.
As a heuristic, we generate a disjunction that covers several
of these cases, and generate only one CVC3 constraint.

For mutations between IN and NOT IN, and between EX-
ISTS and NOT EXISTS, the dataset generated for the orig-
inal query will kill the mutation since the IN clause give an
empty result when NOT IN gives a non-empty result, and
vice versa, and similarly for EXISTS versus NOT EXISTS.

For conditions of the form “r.A relop (SQ)” where SQ
is a scalar subquery, as well as conditions of “r.A relop

[ALL/ANY] SQ”, we consider mutations between the dif-
ferent relops. Similar to the case of generating data for
killing selection mutations from [9], we generate data for
three cases, with relop replaced by >, = and <.

To kill mutation of ALL versus ANY we generate two tu-
ples for the inner query. We assert that one of the tuples
satisfies the comparison operator in the ALL/ANY and the
other does not. The ANY query will generate a non empty
result since there is one tuple satisfying the subquery con-
dition but the ALL query will generate an empty output.

We handle mutations of the subquery, as follows. We as-
sume for simplicity that to generate data for the outer query,
we need to generate only one tuple for each relation (which
excludes some cases of constrained aggregation). Now, treat-
ing the subquery as a normal query, for each dataset gen-
erated to catch mutations, we generate constraints for the
subquery, and then add constraints from the outer query.

Datasets generated thus can catch subquery mutations in
many cases, but not always. For example, if the subquery
connective is NOT EXISTS, and the subquery condition has
a conjunction “P1 AND P2”. To ensure the subquery result
is empty, we enforce “NOT (P1 AND P2)”, which may get
enforced by just negating P1. Thus a mutation of P2 may
not get detected.

7. OTHER EXTENSIONS
Set Operations: We handle the following set operations,
UNION (ALL), INTERSECT (ALL), EXCEPT(ALL) and
mutations between each of them. Generation of a dataset
which satisfies the original query is straightforward. For ex-
ample, for INTERSECT we need to generate datasets for
SQ1 and SQ2 that agree on one tuple, which can be done
by creating constraints to generate tuples for the two sub-
queries. To kill mutants among the above, we generate a
dataset such that both SQ1 and SQ2 contain two tuples
each, all of which are identical. (In case either of SQ1 or
SQ2 cannot generate duplicate tuples due to key constraints,
we just generate a single tuple for the subquery.) We also
generate two more tuples for one of the subqueries, which
are identical to each other but differ from the ones gener-
ated earlier (as before if integrity constraints prevent it, we
just add one tuple). This dataset will kill all nonequivalent
mutations between the set operators.

Handling Parameterized Queries: When generating da-
tasets for a query with parameters, we assign a variable to
every parameter. The solution given by CVC3 also contains
a value for each parameter. It should be noted that since
CVC3 assigns these values, every dataset may potentially
have its own values for the parameters.
DATE and TIME: We handle SQL data types related to
date and time, namely DATE, TIME and TIMESTAMP by
converting them to integers.
Handling Insert/Delete/Update Queries: To handle
INSERT queries involving a subquery, and DELETE queries,
we convert them to SELECT queries by replacing “INSERT
INTO relation” or “DELETE” by “SELECT *”. UPDATE
queries are similarly converted by creating a SELECT query
whose projection list includes the primary key of the up-
dated table, and the new values for each updated column;
the WHERE clause remains unchanged from the UPDATE
query. Data generation is then done to catch mutations of
the resultant SELECT queries.

To test student queries with updates against a given cor-
rect update query, we perform the above transformation for
both the given student queries and the given correct queries,
before testing them as described in Section 8.

8. EXPERIMENTAL RESULTS
We implemented the techniques for data generation de-

scribed earlier, as extensions to the XData system. We also
implemented a tool for grading assignments submitted (us-
ing the Moodle course management system) by students.

We used the datasets generated by XData to grade SQL
query assignments from the undergraduate database course
at IIT Bombay in Fall 2011. We use 15 assignment queries
for our study. The assignments also had a few more queries
which we did not include because they needed some con-
structs that we do not currently handle, including CASE
constructs in the SELECT clause, complex WHERE clause
conditions with negation and disjunction, multiple levels of
nesting in subqueries, and DDL statements.

For each assignment, a correct SQL query Qi was chosen,
and was used to generate datasets. A few of these queries are
shown in Table 1, which also shows the number of datasets
generated for each query; a complete list can be found in [3].
We note that out of 15 queries, 7 queries used features that
are addressed by the techniques described in this paper.

The time taken for generating all the datasets for these
queries (including the time taken by our code and the CVC3
solver) ranged from 6.7 to 49 seconds, with an average of 24.6
seconds on a computer with an Intel(R) Core(TM) i5-2500K
3.30GHz CPU, and 8 GB of memory, running Ubuntu with
Linux kernel 2.6.38. Each dataset was small in size. For
simple queries, the datasets had at most two tuples per re-
lation. And for queries involving aggregation or subqueries,
the datasets had at most 5 tuples for some relations.

Each student query Qij for an assignment was compared
with the correct query Qi. To do so, we execute an SQL
query of the form (Qij EXCEPT ALL Qi) UNION (Qi EX-
CEPT ALL Qij), and if the result of the above query is
non-empty, the student query Qij is marked as incorrect.
Student queries which gave identical results to Qi on all test
datasets are marked as correct.

As comparison points, we also tested the queries with two
sample University databases provided with the textbook by
Silberschatz et al. [10], and with the result of manual cor-

QId DS Query

Q5 8 SELECT DISTINCT course.dept name FROM
course NATURAL JOIN section WHERE
section.semester=’Spring’ AND section.year=’2010’

Q7 4 SELECT course id, COUNT(DISTINCT id) FROM
course NATURAL LEFT OUTER JOIN takes
GROUP BY course id

Q8 11 SELECT DISTINCT course id, title FROM course
NATURAL JOIN section WHERE semester =
’Spring’ and year = 2010 and course id not in (SE-
LECT course id FROM prereq)

Q10 6 SELECT DISTINCT dept name FROM course
WHERE credits = (SELECT max(credits) FROM
course)

Q12 4 SELECT student.id, student.name FROM student
WHERE lower(student.name) like ’%sr%’

Q14 6 SELECT DISTINCT * FROM takes T WHERE
(NOT EXISTS (SELECT id, course id FROM takes
S WHERE grade 6= ’F’ AND T.id = S.id AND
T.course id = S.course id) and T.grade IS NOT
NULL) or (grade 6= ’F’ AND T.grade IS NOT NULL)

Table 1: Partial List of queries, with number of
datasets generated by XData

QId
Que- XData Univ. sm. Univ. lg. TA

ries
√ × √ × √ × √ ×

Q1 55 53 2 53 2 53 2 53 2
Q2 57 56 1 56 1 56 1 56 1
Q3 71 58 13 59 12 59 12 70 1
Q4 78 52 26 52 26 75 3 77 1
Q5 72 49 23 61 11 56 16 59 13
Q6 61 55 6 55 6 55 6 59 2
Q7 77 52 25 54 23 75 3 53 24
Q8 79 46 33 67 12 65 14 63 16
Q9 80 37 43 56 24 10 70 57 23
Q10 74 73 1 73 1 73 1 74 0
Q11 69 53 16 53 16 53 16 53 16
Q12 70 62 8 67 3 63 7 63 7
Q13 72 64 8 63 9 63 9 65 7
Q14 67 58 9 53 14 57 10 32 35
Q15 72 72 0 72 0 72 0 72 0

Table 2: Query grading results

rection by course TAs. The first University database, which
we call Univ. sm. is a small database which was manually
created by the authors of [10] to catch common errors; the
second larger database, which we call Univ. lg. is a larger
database with randomly generated data. The TAs used a
combination of testing against sample databases they cre-
ated, and their own reading of the queries.

The results of the evaluations are given in Table 2. These
results indicate that, overall, the datasets generated by XDa-
ta were significantly more effective than the two University
datasets from [10], and, overall, the manually constructed
small University dataset fared better than the randomly gen-
erated University dataset. There were only two cases where
XData performed significantly worse than at least one of the
two University databases.

Overall, XData fared much better than the TAs, catching
more errors. The actual effectiveness of TAs is a little better
than what the table indicates, since there were some queries
where students made minor errors such as including extra
attributes, which the TAs decided to ignore as irrelevant,
but which were caught by all the datasets.3 However these

3If students had been told that their queries would be graded

cases do not affect the overall results significantly.
Several of the cases where XData performed better were

related to duplicate results; the full version of the paper [3]
provides more details.

There were only two queries where XData did not fare
as well as the University datasets, Q9 and Q14. Q9 had
a subquery with constrained aggregation, a case we don’t
currently handle. Further, some of the erroneous queries had
missing group by attributes, a mutation we do not currently
handle (we are working on this case). Q14 used a disjunction
and two levels of nested subqueries, which our technique
does not handle fully currently. On all other queries, XData
fared as well as or better than the competition.

9. CONCLUSIONS
The XData system is designed to generate data for killing

SQL query mutations. In this paper we introduced novel
techniques to handle a number of widely used constructs
that XData did not handle earlier, and presented a study
showing their practical importance and effectiveness.

We are currently working on extending XData to han-
dle disjunctions, nested subqueries within subqueries, con-
strained aggregation on subquery results, further string con-
straints, missing/extra group by attributes, etc. Creation of
datasets that can handle multiple (possibly chained) queries
in an application is another area of current work.
Acknowledgements: We would like to thank Biplab Kar
and Junaid Mohammed for their contributions to the code
and performance evaluation.

10. REFERENCES
[1] C. Barrett and C. Tinelli. CVC3. In Computer Aided

Verification (CAV), pages 298–302, 2007.
[2] C. Binnig, D. Kossmann, and E. Lo. Reverse query

processing. In ICDE, pages 506–515, 2007.
[3] B. Chandra, B. Chawda, S. Shah, S. Sudarshan, and

A. Shah. Extending XData to kill SQL query mutants in
the wild. In Technical Report, IITB, 2013.

[4] C. de la Riva, M. J. Suárez-Cabal, and J. Tuya. Constraint
based test database generation for SQL queries. In Work-
shop on Automation of Software Test, pages 67–74, 2010.

[5] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input
generation for database applications. In Int’l Symp. on
Software Testing and Analysis, pages 151–162, 2007.

[6] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst. HAMPI: a solver for string constraints. In Intl.
Symp. on Software Testing and Analysis, 2009.

[7] C. Olston, S. Chopra, and U. Srivastava. Generating
example data for dataflow programs. In SIGMOD
Conference, pages 245–256, 2009.

[8] P. Saxena, D. Akhawe, S. McCamant, and D. Song.
KALUZA. http://webblaze.cs.berkeley.edu/2010/kaluza/.

[9] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta,
and D. Vira. Generating test data for killing SQL mutants:
A constraint-based approach. In ICDE, 2011.

[10] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database
System Concepts. McGraw Hill, 6th edition, 2010.

[11] J. Tuya, M. J. S. Cabal, and C. de la Riva. Full predicate
coverage for testing sql database queries. Softw. Test.,
Verif. Reliab., 20(3):237–288, 2010.

[12] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic
regular expression explorer. In ICST, pages 498–507, 2010.

[13] M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic
SQL query explorer. In LPAR, pages 425–446, 2010.

by a tool, they would have taken care to avoid such errors.

