
In Data Veritas —
Data Driven Testing for Distributed Systems

Ramesh Subramonian
LinkedIn

Kishore Gopalakrishna
LinkedIn

Kapil Surlaker
LinkedIn

Bob Schulman
LinkedIn

Mihir Gandhi
LinkedIn

Sajid Topiwala
LinkedIn

David Zhang
LinkedIn

Zhen Zhang
LinkedIn

ABSTRACT
The increasing deployment of distributed systems to solve
large data and computational problems has not seen a con-
comitant increase in tools and techniques to test these sys-
tems. In this paper, we propose a data driven approach to
testing. We translate our intuitions and expectations about
how the system should behave into invariants, the truth of
which can be verified from data emitted by the system. Our
particular implementation of the invariants uses Q, a high-
performance analytical database, programmed with a vector
language.

To show the practical value of this approach, we describe
how it was used to test Helix, a distributed cluster man-
ager deployed at LinkedIn. We make the case that looking
at testing as an exercise in data analytics has the following
benefits. It (a) increases the expressivity of the tests (b) de-
creases their fragility and (c) suggests additional, insightful
ways to understand the system under test.

As the title of the paper suggests, there is truth in the data
— we only need to look for it.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Software Testing, Dis-
tributed Systems

1. INTRODUCTION
The data driven testing approach that we advocate consists
of three activities

1. Instrumentation Inserting probes that provide some
characterization of the system state. Examples include
(i) log files (ii) system monitors (iii) the use of HTTP
proxies, (iv) tcpdump (v) journaling triggers to mon-
itor changes to a database [6] (vi) Aspect Oriented

Programming [8] to record paths through the code,
. . . With apologies to physicists, we like to say that
these probes should not fall prey to “Heisenberg’s Un-
certainty Principle” i.e., the act of observation should
not materially affect the system under observation.

It is often necessary to have some idea about how the
data will be analyzed at the time it is collected. “Trac-
ers” are one example of this. For example, many large
systems are a collection of distributed services that
communicate over a protocol such as HTTP. In such
cases, the incoming request should be tagged with a
URL parameter (with a unique value) that passes un-
modified (but recorded in the Apache log file) as the
initial request fans out to multiple servers before co-
alescing back to a single response. The value of the
URL parameter is then used as a “link field” to “join”
different tables (Section 5.1).

2. Simulation Making the system go through the full
range of motion that we desire to test. Production
usage is one particularly realistic form of stress. Ran-
dom (or quasi-random) testing, of the “Chaos Mon-
key” variety [10], is useful to push the system into cor-
ner cases without explicitly programming transitions
through the search space of possible system states.

3. Analysis Data collected as a result of the above is
analyzed to determine whether the system is behaving
as expected, in terms of functionality and/or perfor-
mance. An explicit set of invariants, whose truth can
be ascertained from just the data collected in the above
phases, constitutes the heart of the testing.

There are many ways to perform this analysis. As a
matter of practice, we have found that it is efficient to
parse the data into a relational format and load it into
a relational database that can be queried to determine
whether the observed data matches expectation. The
difficulty of expressing invariants in SQL (a perfectly
valid option and our initial choice) led us to create Q
(Section 3).

1.1 Weakness of conventional testing
Testing asynchronous, distributed systems is difficult when
one adopts the conventional “action-reaction” style of tests.
The action-reaction style of testing consists of (i) getting the
system into a desired state, (ii) performing a single action,
(iii) waiting for the system to quiesce, and (iv) verifying



that the new state of the system reflects the change made.
Instead, we need to observe every transition made by every
node in the system and convince ourselves that, at no time,
was the system in an inconsistent state.

We single out “record and replay” for its seductive simplic-
ity. Using it, one can quickly crank out tests in the form of
scenarios. However, in our experience, the test engineer is
quickly bogged down by (1) the difficulty of getting a dis-
tributed system to perform exactly the same sequence of
actions under the same conditions. [9] have shown how to
record the workload running on a one database server, and
subsequently replay it on a different one. However, orches-
trating a faithful replay on a distributed system is a much
harder problem. (2) the maintenance of these scenarios, es-
pecially when the software under test is evolving rapidly.

To be fair, it is not our intention to proscribe record-and-
replay tests — we do maintain a small battery of such tests
ourselves (Point 1 of Section 1.2 shows how we devise these
tests). The key point is that they are more expensive than
they appear to be and they are best when complemented
with less expensive (albeit less reproducible) approaches.

1.2 Strengths of data-driven testing
It is our contention that looking at testing as an exercise in
data analytics makes it simple and straight-forward to write
tests that capture the intuition of the system architect and
the experience of the deployment engineer.

• Data driven testing is also useful for devising tests.
When the analysis phase discovers an error, we trace
back through the logs to attempt to determine the se-
quence of operations that caused the problem. When
successful, these steps are converted into the conven-
tional action-reaction class of tests.

• Data-driven testing can serve as an effective knowl-
edge base. The term“knowledge management” is likely
to have acquired the unfortunate connotation of being
more fluff than substance. However, our claim is that
tests written at the correct level of abstraction are a
better knowledge management tool than a Wiki page,
which often has a write-once, read-seldom existence. A
good test is one that can be understood and debated
by the architect who designed the system, the engi-
neer who implemented it and the operations engineer
tasked with keeping it alive.

• Rather than focusing on test cases and creating scaf-
folding to run the system through those cases (whether
action-reaction or record-replay), we run the system
“like production”, although with a wider range of work-
load to exercise corner cases more frequently than they’d
come up normally. The only cost of testing this way
is that of adding instrumentation, which is useful to
monitor the system anyway and not a high cost. This
allows us to test the system as it changes as long as
one can run it, and one doesn’t have to worry about
maintaining growing set of test cases, and the associ-
ated infrastructure associated with it. Of course, if the
specification (not the implementation) of the system

changes, then the invariants we write need to change
as well.

• Software development is fast-paced business and new
versions, which take advantage of emerging hardware
and software innovations, need to be developed and
deployed smoothly, even as existing versions are in de-
ployment. By divorcing the tests from the system it-
self, the functional specifications that carry over from
one version to the next, can test the new version and
make sure that it does not regress. We recommend not
relying on the developer of the system under test for
instrumentation. Especially in less mature systems,
log files are more soliloquies than an explicit contract
between developer and tester, that can be relied on to
not change from one version to the next.

1.3 Weaknesses of data-driven testing
Truth in advertising requires us to note the weaknesses of
our preferred approach with the same candor as we have
disparaged the alternatives.

• It depends on acquisition of data with sufficient fidelity
for the analysis in question. For example, let us assume
that the way we correlate actions on two servers is by
using the “time in microseconds” in their respective
log files as a link field when performing a join. Despite
synchronizing network clocks, there may be a small
(but non-zero) difference between the times at which
the actions were recorded. This makes linking them
difficult.

• It is not always possible to get the“right”data in a non-
intrusive manner. This requires cooperation from the
developers. We are blurring the distinction between
“white-box” and “black-box” testing.

• It does not dispense with the creativity needed to push
the system to the breaking point in the Simulation
phase.

• While the Analysis phase can help point out lacunae,
it does not suggest how they can be rectified.

• It does not obviate the need for good software engi-
neering practices such as code reviews and unit tests.

1.4 Related Work
We agree with [2] which states that “testing is (to a large
extent) a database problem and that many testing activities
can be addressed best using database technology”. Their fo-
cus on generating test data falls under “Simulation” in our
terminology, not on analysis. While we agree with their
claim that test code should be declarative, we disagree with
their choice of SQL for this purpose. We found that express-
ing invariants in SQL to be possible but cumbersome, which
motivated the development of Q

BloomUnit [1] is a testing framework for distributed pro-
grams written in the Bloom language. Like us, they advo-
cate an “incremental process by which a programmer might
provide and refine a set of queries and constraints until they
define a rich set of correctness tests for a distributed sys-
tem.” In contrast, they focus on specifications that describe



the input/output behavior, whereas the invariants we prefer
must hold true regardless of the input.

1.5 Organization
The paper is organized as follows

1. Section 2 describes Helix, a general purpose cluster
manager, which will be use as a case study through the
rest of the paper. While Helix provides useful context
for exposition, the technique of data driven testing is
broadly applicable.

2. Section 3 describes Q, an analytical database used to
implement the invariants. We recognize that the use
of a special purpose language (as opposed to SQL) is
controversial. Our (admittedly weak) defense is that
SQL was our first choice, and it was only when it did
not provide the expressivity and speed that we needed,
did we invent something new. Regardless, the choice of
invariant evaluation technology does not detract from
the merits of the methodology.

3. Section 4 lists data collected by Instrumentation

4. Section 5 gets into the meat of the matter — analy-
sis. We list some of the invariants designed and their
implementation in Q. While we do not list Q code ex-
plicitly, the pseudo-code translates (almost) line for
line to statements in Q.

2. THE HELIX USE CASE
Helix is a general purpose cluster manager, meant to sim-
plify the development of distributed systems. By letting the
system specify behavior in terms of a state machine and
constraints, Helix handles the hard problems of partition
management, fault tolerance and cluster expansion.

While Helix has been (and can be) used in a variety of differ-
ent contexts, in this paper we describe its usage in managing
a distributed database. For brevity, we must grossly over-
simplify its functionality. Details can be found in [7].

Assume that we wish to distribute a database across a num-
ber of nodes in order to improve performance and gain fault-
tolerance. The database is divided into partitions P1, P2, . . .,
each of which is replicated e.g., P11, P12, would be the repli-
cas of P1. These replicas are distributed over a set of nodes,
M1,M2, . . ..

With each replica is associated a state. It is Helix’s respon-
sibility to manage the state of the replicas, subject to con-
straints placed by the user at configuration time. The “aug-
mented state machine” managed by Helix allows the user to
specify (i) the set of legal states , (ii) the set of legal state
transitions, and (iii) the minimum and maximum number of
replicas that should be in a given state.

For simplicity of exposition, and with no loss in generality,
we assume that all inputs to, and observations of, the system
are in the form of tables. In reality, these are in XML and/or
JSON format. However, it is trivial to parse them into CSV
files which are then loaded into tables in Q (Section 3).

We now describe the configuration provided by the user,
which can be thought of as a contract that must be enforced
by Helix on the distributed system.

2.1 State Machine
Helix allows one to specify, for each partition an augmented
state machine as in Section 2.1.1 and 2.1.2.

2.1.1 States and Counts
Table TS contains columns — (1) state, (2) nmin

R = mini-
mum number of replicas in that state, (3) nmax

R and (4) pri-
ority (which specifies the relative importance of constraints).
For example, Table 1 asserts that

1. there are 4 states in the system — M, S, O, D

2. we would like to have 1 replica in state master and 2
replicas in state slave

3. it is more important to have 1 replica in state master
than it is to have 2 replicas in state slave

State Min Count Max Count Priority

(M) Master 1 1 1
(S) Slave 1 2 0
(O) Offline ⊥ ⊥ ⊥
(D) Dropped ⊥ ⊥ ⊥

Table 1: Sample of State Specification

2.1.2 State Transitions
Table TX contains 3 columns — from state, to state and
priority. For example, if we have rows (O, S, 0), (M, S,
0) and (S, M, 1), it means (i) that (M, S), (S, M), (O, S)
are legal state transitions and (ii) it is more important to
execute the (S, M) transition than either the (M,S) or (O, S)
transitions. By “important” we mean that if it were possible
to either (i) an (S,M) for some partition or (ii) an (M,S)
transition for some other partition but not both, then the
more important transition should be executed.

3. Q — THE ANALYTICAL DATABASE
Q is a high-performance“almost relational”analytical column-
store database.

By “analytical”, we mean that it is not meant for transac-
tional usage — data is loaded infrequently. The relatively
high cost of data change is amortized over the analysis work-
load. While Q can handle data changes, it is expensive and
therefore inadvisable to use Q in situations where the data
changes are frequent.

By“almost relational”, we mean that it would more correctly
be called a “tabular model” [3]. As Codd states, “Tables are
at a lower level of abstraction than relations, since they give
the impression that positional (array-type) addressing is ap-
plicable (which is not true of n-ary relations), and they fail to
show that the information content of a table is independent
of row order. Nevertheless, even with these minor flaws,
tables are the most important conceptual representation of
relations, because they are universally understood.”



That said, the tabular model implemented by Q satisfies
Codd’s requirements for a data model, which are

1. A collection of data structure types (the database build-
ing blocks)

2. A collection of operators or rules of inference, which
can be applied to any valid instances of the data types
listed in (1), to retrieve, derive, or modify data from
any parts of those structures in any combination de-
sired;

3. A collection of general integrity rules, which implicitly
or explicitly define the set of consistent database states
or changes of state or both — these rules are general
in the sense that they apply to any database using this
model

3.1 Operations in Q
The basic building block is a table which can be viewed as
a collection of fields or columns, each of which has the same
number of cells or values. This allows us to use notation of
the form (i) T [i].f which is the ith row of column f of table
T or (ii) T [f = v] which is the subset of rows of table T
where column f has value v (iii) the symbol for null is ⊥

Every operation of Q consists of reading one or more columns
from one or more tables and producing one or more columns
in an existing table or a newly created one. This relatively
simple statement makes for great simplicity, both in terms of
implementation and programming (Section 3.2). There are
a few exceptions to this rule e.g., computing an associative
operation on a column, are the values of a column unique,
meta-data based operations like table listing . . .

3.2 Programming Q
Q is programmed with a vector language, not with tradi-
tional SQL. We list a few of the operations that can be
performed in Q.

1. sort T1 f1 f2 f1’ f2’ A_ would mean that we read
columns f1, f2 in table T1 and create columns f1’,

f2’, such that f1’ is a permutation of f1 sorted in
ascending order and field f2’ is permuted, as a drag-
along field.

2. shift T1 f1 n f2 creates a new field f2 in table T1 as
T [i].f2 ← T [i− n].f1 and ∀j : 1 ≤ j ≤ n : T [j].f2 ← ⊥

3. w_is_if_x_then_y_else_z T f_w f_x f_y f_z cre-
ates a new field f_w in table T as follows. if T [i].fx =
true then T [i].fw ← T [i].fy else T [i].fw ← T [i].fz fi

4. OBSERVATION OF SYSTEM BEHAVIOR
As mentioned before, a system emits several signals when
it runs. In this paper, we focus on just one of the signals
emitted by Helix — Zookeeper’s logs. Helix uses Zookeeper’s
group membership and change notification to detect state
changes. Zookeeper’s logs, when parsed, produce the tables
listed in this section.

In general, prior to analysis, the data is massaged so that
it is easy to reason about. Consider a specific example in

the Helix use case. A node may die and come back to life
several times during the course of testing. During each of
its “lives”, its IP address is the same but it has a different,
unique session identifier. We convert the session into an
“incarnation” number that starts at 1 and increments by 1
for each “life” that this node has.

4.1 Zookeeper Logs (Parsed)
4.1.1 LiveInstances

Every time an instance goes down or comes up, a row is
inserted into TLI table, with 4 columns — (1) time (2) in-
stance (3) incarnation (4) op, whether added or deleted.

4.1.2 Messages
Every time a state transition occurs, a row is inserted into
Table TMSG, which contains 6 columns — (1) time (2) par-
tition(3) instance (4) incarnation (5) from state (6) to state

4.1.3 CurrentState
Table TCS tells us the state of an instance at different points
in time. It contains the 5 columns — (1) time (2) partition
(3) instance (4) incarnation (5) current state.

5. TESTING
5.1 Triangulation
In testing terms, triangulation is the observation of the same
effect from two different viewpoints and making sure that
they are consistent. While such data collection might appear
redundant, our experience suggests that the benefit of the
greater confidence far outweighs the collection (and analysis)
cost.

5.2 Sanity Checks on Data
While this might sound like a serpent swallowing its tail, we
recommend performing basic sanity checks on the data prior
to using it for analysis. This process has often revealed errors
in the data collection process or assumptions made in the
post-processing parsing/loading routines. As an example,
consider TLI , Section 4.1.1. The checks made are as follows

Invariant 1. (instance, incarnation, op) is unique

Invariant 2. |TLI [instance = x‖] = n ⇒ ∀i : 1 ≤ i ≤
n,∃j : TLI [j].instance = x ∧ TLI [j].incarnation = i

5.3 Testing for Correctness
For every state transition of a replica, we need to check that
it is legal.

• Add a Boolean column x to TMSG as follows. ∃j :
TX [j].from, to = TMSG[i].from, to⇒ TMSG[i].x← 0;
else, 1.

• n←
P

i TMSG[i]. Error if n > 0



5.4 Testing as an ongoing dialogue
Testing, when performed as an exercise in data analytics,
becomes a matter of finding the right mathematical abstrac-
tion to describe a complex system. In this light, it serves to
improve the understanding of the system as much for the
test engineer as for the architect. The following example
illustrates the point. Consider the specification of Table 1.
This is implemented as follows.

• Sort T ′ = TMSG, with partition being the primary key
and time being the secondary key.

• For each state, s, create a column δs as follows

1. to state = s⇒ δs ← 1

2. from state = s⇒ δs ← −1

3. else, δs ← 0

• Then, for each state, s, create a column ns in T ′ as fol-
lows. T ′.partition[i] = T ′.partition[i−1]⇒ T ′.ns[i] =
T ′.ns[i − 1] + T ′.δs[i]; else T ′.ns[i] = number of ma-
chines in which partition partition[i] is in state s at
the start.

• Then, TS [s].nmin
R ≤ T ′.ns[i] ≤ TS [s].nmax

R

When we evaluated the above invariant, we found a partition
where it had been violated, as shown in Row 4 of Table 2.
Let (t, n) be a row of this table. This means that the number
of replicas in state Slave at time t was n.

ID Time Number of Replicas

1 42632 0
2 43131 1
3 43275 2
4 43323 3
5 85795 2

Table 2: Number of Replicas in state Slave

On reflection, this is not surprising. Consider what happens
when a master goes down. There will be a transient period
of time when there is no master. Also, since (as configured
in Section 2.1.2) a node cannot transition directly from state
Offline to state Master (except through state Slave), there
may be some time when the number of slaves is exceeded.

So, the question is not whether the constraint is violated,
but for how long it is violated. As an example, during one
of our test runs, we produced Table 3. Let s, n, p be a row
of this table. This means that, averaged over all partitions,
p is the percentage of time that the number of replicas in
state s was n.

The above discovery led us to go back to the architects to
force them to explicitly state a Service Level Agreement —
how long is too long?

The discerning reader would have noticed an inadequacy in
the formulation of Table 3. What we have computed is the
average time a partition does not have a master. This needs

State Number of Percentage
Replicas of Time

Slave 0 0.5
Slave 1 16.5
Slave 2 82.95
Slave 3 0.05
Master 0 7.2
Master 1 92.8

Table 3: Percentage of time for State Count

to be refined to say that the maximum time any partition
does not have a master needs to be below a certain bound.

This is computed as follows.

1. Use instance, incarnation to create a single composite
field p

2. Create a Boolean field x which is true when nM , the
number of replicas of that instance, is 0 or 1.

3. Let T ′ ← TMSG[x = true] be a subset of TMSG

4. Sort T ′ with p being the primary key and time being
the secondary key, both ascending

5. Create field δ where deltai ← ti − ti−1

6. Create a Boolean field x in T ′, x[i] = true⇔ nM [i] =
1 ∧ nM [i− 1] = 0 ∧ p[i] = p[i− 1]

7. Let T ′′ ← T ′[x = true] be a subset of T ′′

8. Then, the maximum value of δ in T ′′ needs to be
bounded appropriately.

The purpose of the above narrative was to convince the
reader that a testing framework is not simply a means of
efficiently recording tests enunciated from on high. It must
support an ongoing dialogue between designer, tester, devel-
oper and deployer.

Most importantly, our approach recognizes that is difficult,
in practice, to start with a fully specified system, where
all possible test cases are known a priori. The fact that the
data is available for analysis long after the simulation is done
enables (and encourages) the test engineer to define and run
more tests, as long as the instrumentation supports it.

5.5 Testing for Test Coverage
In the context of testing, the question “Who will guard the
guardians”1 becomes one of determining, from the data,
whether the system was pushed to the potential points of
failure. Testing whether every state transition was executed
is done as follows

• Create a constant field x = 1 in TMSG

1attributed to the Roman poet Juvenal



• Create a field n in table TX by using (from, to) as a
composite link field and summing the values of x using
grouped aggregation

• Table 4 is an example of the output and we place con-
ditions on the minimum number of times a transition
must be executed for us to believe that it is well tested.

From To Count

Master Slave 55
Offline Dropped 0
Offline Slave 298
Slave Master 155
Slave Offline 0

Table 4: Count of State Transitions

5.6 Testing for Knowledge Capture
It would be blatantly misleading to claim that the support
provided by analytics obviates the need for creativity in de-
signing tests. However, what our approach does provide is
an easy and methodical way to capture past experiences and
intuitions. As the saying goes, “Fool me once, shame on you.
Fool me twice, shame on me.”

As an example, we discovered (by chance) that when a node
went down and came back up in a very short period of time,
it would throw the system out of whack. What this told us
was that every subsequent test run should contain scenarios
where machines are toggled on and off rapidly. Implemen-
tation in Q consists of the following steps.

1. Sort TLI on node (primary) and time (secondary),
both ascending

2. Let T [i].δ ← TLI [i].time− TLI [i+ 1].time

3. Let T ′ ⊆ TLI contain only those rows such that

(a) TLI [i].node = TLI [i+ 1].node

(b) TLI [i].op = DELETE

(c) TLI [i+ 1].op = ADD

4. The distribution of T ′.δ should be sufficiently diverse,
small values of δ corresponding to rapid on-and-off cy-
cling.

6. FUTURE WORK
The perceptive reader would have noted the following lacu-
nae in our approach. They remain an area of active research
and development.

• Given the impossibility of exploring the search space
completely, how does one intelligently guide the explo-
ration of this space so as to improve test coverage. In
other words, could one have automatically created the
“Amazon storm” scenario without explicitly program-
ming it?

• Given that we wish to move the system from one state
to another, how does one work backwards through the
“Simulation” phase to perform the actions that effect
that transition?

• Once the quasi-random simulation discovers a weak
point in the system, how can one automatically convert
that knowledge into a deterministic test?

7. CONCLUSION
If testing is difficult business (“program testing can be a
very effective way to show the presence of bugs, but is hope-
lessly inadequate for showing their absence” [4]), testing dis-
tributed systems is even more so. Data driven testing pro-
vides a structured methodology to reason about the behavior
of a system and to compare expectation with observation. It
does not require repeatable tests, the maintenance of which
is expensive, especially in an rapidly evolving software envi-
ronment.

Instead, we focus on workload and analysis. We take the
production system and put it through workloads designed to
make it encounter corner cases and potentially troublesome,
be they “thundering herds”, “flapping”, . . . And we leave it
to the data to tell the story as to whether those states did
occur and whether the correct behavior happened.

It is hard to disagree with Dijkstra [5] that “The only ef-
fective way to raise the confidence level of a program sig-
nificantly is to give a convincing proof of its correctness. ”
Nevertheless, data-driven testing is a practical step towards
formal specification. Our difficulty is, as Dijkstra [5] pointed
out, “It is psychologically hard in an environment that con-
fuses between love of perfection and claim of perfection and,
by blaming you for the first, accuses you of the latter.”

8. ADDITIONAL AUTHORS
9. REFERENCES
[1] P. Alvaro, A. Hutchinson, N. Conway, W. Marczak,

and J. Hellerstein. Bloomunit: Declarative testing for
distributed programs. In DBTest 2012, May 21, 2012.

[2] E. L. Carsten Binnig, Donald Kossman. Towards
automatic test database generation. Data Engineering,
31(1):28–35, March 2008.

[3] E. F. Codd. Relational database; a practical
foundation for productivity. Communications of the
ACM, 25(2):109–117, February 1982.

[4] E. W. Dijkstra. The humble programmer.
Communications of the ACM, 15(10):859–866, 1972.

[5] E. W. Djkstra. EWD 648.
www.cs.utexas.edu/ ewd/transcriptions/EWD06xx/EWD648.html.

[6] P. Frankl. Somebody put a database in my software
testing problem. In DBTest 2010, June 7, 2010.

[7] K. Gopalakrishna, S. Lu, A. Silberstein,
R. Subramonian, K. Surlaker, and Z. Zhang.
Untangling cluster management with Helix. In SOCC,
2012.

[8] G. Kiczales, J. Lamping, A. Mehdhekar, C. Maeda,
V. Lopes, J. Loingtier, and J. Irwin. Aspect oriented
programming. In Proceedings of the European
Conference on Object-Oriented Programming,
Springer Verlag LNCS 1241, June 1997.

[9] K. Morfonios et al. Consistent synchronization
schemes for workload replay. In SIGMOD, 2011.

[10] Netflix Engineering Team. Chaos Monkey.
https://github.com/Netflix/SimianArmy.


