
D-Zipfian: A Decentralized Implementation of Zipfian

Sumita Barahmand, Shahram Ghandeharizadeh
Computer Science Department

University of Southern California
Los Angeles, California

{barahman,shahram}@usc.edu

ABSTRACT
Zipfian distribution is used extensively to generate work-
loads to test, tune, and benchmark data stores. This paper
presents a decentralized implementation of this technique,
named D-Zipfian, using N parallel generators to issue re-
quests. A request is a reference to a data item from a fixed
population of data items. The challenge is for each genera-
tor to reference a disjoint set of data items. Moreover, they
should finish at approximately the same time by performing
work proportional to their processing capability. Intuitively,
D-Zipfian assigns a total probability of 1

N
to each of the

N generators and requires each generator to reference data
items with a scaled probability. In the case of heteroge-
neous generators, the total probability of each generator is
proportional to its processing capability. We demonstrate
the effectiveness of D-Zipfian using empirical measurements
of the chi-square statistic.

Categories and Subject Descriptors
C.4 [Performance of systems]: Measurement techniques,
Modeling techniques; G.3 [Probability and statistics]:
Distribution functions, Experimental design

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Benchmarking, Zipfian distribution, Social networks, Dis-
tributed architectures

1. INTRODUCTION
Benchmarks are a critical component of testing, tuning,

and evaluating data stores. Over the years, several studies
have argued for an application-directed approach to bench-
marking that reflects the behavior of a particular applica-
tion [2, 17, 13]. With most applications, a uniform random

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest ’13, June 24 2013, New York, NY, USA
Copyright 2013 ACM 978-1-4503-2151-8/13/06 ...$15.00.

distribution of access to data items is typically not realistic
due to Zipf’s law [20]. This law states that given some collec-
tion of data items, the frequency of any data item is inversely
proportional to its rank in its frequency table. This means
the data item with the lowest rank in the frequency table
will occur more often than the data item with the second
lowest rank, the data item with the second lowest rank in
the frequency table will occur more often than the one with
the third lowest rank, and so on and so forth. By manipulat-
ing the exponent1 θ that characterizes the Zipfian distribu-
tion one may emulate different rules of thumb such as: 80%
of requests (ticket sales [5], frequency of words [20], profile
look-ups) reference 20% of data items (movies opening on a
weekend, words uttered in natural language, members of a
social networking site).

BG [3] is a benchmark that quantifies the processing ca-
pability of SQL, NoSQL and NewSQL [4, 19] data stores
among others2 in support of interactive social networking
actions and sessions. (See [4] for a survey of alternative
data stores.) It rates a data store using a pre-specified ser-
vice level agreement, SLA. An example SLA may require
95% of issued requests to observe a response time faster than
100 milliseconds with the amount of produced unpredictable
reads less than 0.1%. Given a data store, BG computes two
different ratings named SoAR and Socialites. While SoAR
pertains to the highest throughput (actions per second) sup-
ported by the data store, Socialites quantifies the maximum
number of simultaneous threads that satisfy the specified
SLA. Figure 1 illustrates these concepts using MongoDB
version 2.0.6, a document store for storage and retrieval of
JavaScript Object Notations, JSON. It shows the through-
put (y-axis) of MongoDB as a function of the number of
threads (x-axis). The two different curves pertain to the
number of benchmarking nodes, termed BGClients, used to
generate the workload for the data store. The curve labeled
“8 BGClients” terminates at 1025 threads because the pre-
specified SLA is violated with more than 1025 threads. This
is the Socialites rating of MongoDB. The highest observed
throughput, i.e., peak of this curve, is 36,043 actions per
second and is realized with 264 threads. Hence, SoAR of
MongoDB is 36,043.

Today’s data stores process requests at such a high rate
that one BGClient may not be sufficient to rate them ac-
curately [3]. To address this challenge, BG utilizes multi-
ple BGClients to generate work for its target data store.
A coordinator, termed BGCoord, manages these BGClients

1See Equation 1 in Section 2.
2Such as cloud service providers and graph databases.

and aggregates their results for final display. To illustrate,
consider the curve labeled 1 BGClient in Figure 1. It cor-
responds to the same experiment as the one with 8 BG-
Clients with one key difference: Only 1 BGClient is used
to generate the workload. It computes SoAR of MongoDB
to be 15,000 actions per second. This is inaccurate because
the BGClient has utilized its Intel i7-2600 four core CPU
fully while MongoDB’s CPU is partially utilized. 8 BG-
Clients resolve this limitation to accurately3 quantify SoAR
of MongoDB at 36,043 actions per second. This is more than
two folds higher than the peak throughput observed with 1
BGClient. The Socialites rating with 8 BGClients (1025)
is more than 3 times higher than that with one BGClient
(317).
Use of multiple BGClients raises the following research

question: How do BGClients produce requests such that
their overall distribution conforms to a pre-specified Zipfian
distribution? One solution, named Replicated Zipfian (R-
Zipfian), requires each BGClient to employ the specified Zip-
fian distribution with the entire population independently.
R-Zipfian is effective when BG produces workloads with read
only references. It also accommodates heterogeneous nodes
where each node produces requests at a different rate as each
BGClient uses the entire population to generate the Zipfian
distribution.
However, with BG, R-Zipfian introduces additional com-

plexity in two cases. First, different BGClients might be
required to reference a unique data item at an instance in
time in order to model reality. For example, they might
be required to emulate a unique user of a social networking
site performing an action such as accepting friend request.
R-Zipfian would require additional software to coordinate
multiple BGClients to guarantee uniqueness of the refer-
enced data items. Second, BG measures the amount of un-
predictable data produced by a data store using workloads
that are a mix of read and write actions. It time stamps
these to detect unpredictable reads. R-Zipfian would re-
quire BG to utilize synchronized clocks [10, 11, 6, 9, 14] to
detect unpredictable reads. Both complexities are avoided
by partitioning data items across BGClients.
With partitioning, BGCoord assigns a disjoint set of data

items to each BGClient. A BGClient issues requests that ref-
erence its assigned data items only. This ensures BGClients
reference unique data items simultaneously. Moreover, the
potential read-write and write-write conflicts are localized to
each BGClient and its partition, enabling it to quantify its
observed amount of unpredictable data using its own system
clock and independent of the other BGClients.
With N BGClients, each BGClient must reference data

items such that the overall distribution of references con-
forms to a Zipfian distribution with a pre-specified θ. More-
over, the resulting distribution must remain constant as a
function of N , i.e., the degree of parallelism employed by
BG. This property is not trivial to realize because each BG-
Client has a subset of the original population and issues
requests independently. As discussed in Section 3, if each
BGClient uses the original θ with a subset of the popula-
tion, the resulting distribution becomes more uniform as we
increase the value of N . This is not desirable because it pro-

3The 8 BGClients impose a sufficiently high load to cause
MongoDB to fully utilize the Intel i7-2600 four core CPU of
its server. In [3], we report ratings with 16 BGClients that
are identical to those obtained using 8 BGClients.

0 100 200 300 400 500 600 700 800 900 1000
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

8 BGClients

T

Throughput(Actions/Second)

1 BGClient

Figure 1: Performance of MongoDB with two dif-
ferent number of BGClients.

duces experimental results that are erratic and difficult to
explain. For example, one may quantify the processing ca-
pability of a cache augmented SQL (CASQL) data store [8,
16, 1] with n1 and n2 BGClients (n1 < n2) and observe a
lower processing capability with n2 because its distribution
pattern is more uniform (which reduces the cache hit rate
with a limited cache size). This is avoided by making the
Zipfian distribution independent of N .

The primary contribution of this paper is D-Zipfian, a
novel technique that uses N parallel BGClients to issue re-
quests that reference data items from a fixed population.
Each BGClient references a disjoint set of data items. D-
Zipfian ensures (1) the N BGClients finish at approximately
the same time even when they issue requests at different
rates, and (2) the overall distribution of references to the
entire population is independent of N and conforms to a
pre-specified θ.

The rest of this paper is organized as follows. Section 2
formalizes the problem statement to parallelize a Zipfian
distribution. Section 3 presents two intuitive solutions and
quantifies their limitations using a small population of data
items. D-Zipfian is presented and quantified in Section 4.
We discuss D-Zipfian in Section 5 and conclude in Section 6.

2. PROBLEM STATEMENT
With a Zipfian distribution, assuming M is the number of

data items, the probability of data item i is:

pi(M, θ) =
1

i(1−θ)
∑M

m=1(
1

m(1−θ))
(1)

where θ characterizes the Zipfian distribution.
Assuming data items are numbered 1 to M , a centralized

implementation of Zipfian is as follows:

1. Compute the probability of each data item using Equa-
tion 1.

2. Compute array A consisting of M elements where the
value of the first element is set to the probability of
the first item, A[1] = p1(M, θ), and the value of each
remaining element m is the sum of its assigned prob-
ability and the probabilities assigned to the previous
m − 1 elements, A[i] =

∑i

j=1 pj(M, θ), 1 ≤ i ≤ M .

The last element of the array, A[M], should equal 1
because sum of the M probabilities equals one. If this
value is slightly lower than 1 then set it to 1.

3. Generate a random value r between 0 and 1. Identify
the kth element of the array that satisfies the following
two conditions: a) A[k] is greater than or equal to r,
and b) Either A[k-1] has a value lower than r or is non
existent (because k is the first element of A). Produce
k as the referenced data item, 1 ≤ k ≤ M .

For an example, see discussions of Table 1 in Section 3.
The challenge is how to parallelize this simple algorithm

such that N BGClients reference data items and produce a
distribution almost identical to that of one BGClient refer-
encing data items. Below, we differentiate between local and
global probability of a data item to provide a mathematical
formulation of the problem.
Each data item i has a local and a global probability of

reference. Its local probability specifies its likelihood of ref-
erence by its assigned BGClient k with mk data items. One
possible definition of the local probability of an object i is
provided by Equation 1, pi(mk, θ). An algorithm may ei-
ther use this definition or provide a new one, see Crude in
Section 3 and D-Zipfian in Section 4. The global probability
of data item i assigned to BGClient k is a function of its
local probability and the ratio of the number of references
performed by BGClient k (Ok) relative to the total number
of references (O) by N BGClients:

qi(M, θ,N) =
Ok

O
× pi(mk, θ) (2)

With 1 BGClient, N = 1, local and global probability of
a data item are identical, qi(M, θ, 1) = pi(mk, θ), because
all data items are assigned to one BGClient, mk = M , and
that BGClient issues all requests, i.e., O1

O
= 1. With 2 or

more BGClients, the global probability of a data item is
lower than its local probability, qi(M, θ, 1) ≤ pi(mk, θ). See
discussions of Table 1 in Section 3.
In sum, a parallel implementation of Zipfian with N BG-

Clients may manipulate either the number of data items
(mk) assigned to each BGClient k and their identity, the
definition of the local probability of an object i, the number
of references (Ok) made by BGClient k, or all three. Note
that by manipulating Ok, we are not shortening the execu-
tion time of one BGClient relative to the others, see Sec-
tion 5. To the contrary, as detailed in Section 4.2, D-Zipfian
manipulates Ok to require a mix of fast and slow BGClients
to complete at approximately the same time. This is impor-
tant because if one BGClient finishes considerably sooner
than the others then the degree of parallelism is no longer
N .
A mathematical formulation imposes the following con-

straint on a parallel implementation of Zipfian: qi(M, θ,N) ≈
qi(M, θ, 1) for all i and N > 1. It states the computed global
probability of each data item i with two or more BGClients
should be approximately the same as its computed proba-
bility with one BGClient.
The concepts presented in this section are demonstrated

with an example in the next section using two näıve and
intuitive ways to parallelize the centralized implementation
of the Zipfian. They pave the way for the correct parallel
implementation, D-Zipfian of Section 4. The reader may
skip to Section 4 for the final solution.

3. TWO NAïVE APPROACHES
This section uses a small population consisting of twelve

data items (M=12) to demonstrate the concepts presented

in Section 2. In addition, it describes two näıve techniques
to parallelize Zipfian and their limitations.

Table 1 shows the local and global properties of the in-
dividual data items with 1 and 3 nodes, N=1 and N=3.
Its first column shows the individual data items numbered
from 1 to 12. Its second and third columns correspond to
one node (N = 1) and show the local and global probabili-
ties of each data item with the exponent 0.01, θ=0.01, and
the values of Array A used by a centralized implementation
to generate the Zipfian distribution, respectively. To imple-
ment Zipfian, an implementation generates a random value
r between 0 and 1, say r=0.5. It produces data item 3 as
its output because A[3] exceeds 0.5 and A[2] is less than 0.5.
(See Step 2 of the pseudo-code to generate data items in
Section 2 for a precise definition of selecting A[i].)

With N BGClients, say N=3, a technique named Crude

range partitions data items across the BGClients as follows:
BGClient 1 is assigned data items number 1 to 4, BGClient
2 is assigned data items number 5 to 8, and BGClient 3
is assigned data items number 9 to 12. It uses Equation 1
with mi = 4 and the original θ value (0.01) to compute the
local probability of each data item, see the fourth column
of Table 1. The fifth column of Table 1 shows the global
probability of each data item with Crude using Equation 2
assuming each BGClient produces 1

3
of references, i.e., O =

3 × Ok. These are significantly different than those with 1
BGClient, compare 2nd and 5th columns, and do not satisfy
the mathematical constraint presented in Section 2.

Crude may assign data items to N BGClients in several
other ways including:

• Hash (instead of range) partition data items using their
id i to assign mk data items to BGClient k.

• Provide BGClient k withmk assigned data items. Next,
each BGClient would use the centralized implementa-
tion of Zipfian (see Section 2) with the entire popula-
tion to reference a data item. If the referenced data
item is not one of the mk data items then BGClient k
discards this request and generates a new one.

While these enable each BGClient to generate a Zipfian dis-
tribution independently, the resulting distribution (across
all N BGClients) is dependent on the value of N . As we
increase the value of N , the resulting distribution becomes
more uniform, see Figure 2.a. Note that withN=3, the same
distribution is repeated 3 times because each BGClient gen-
erates its distribution independently withmk=4 and θ=0.01.
Hence, a data item that was referenced infrequently with
N=1 is now accessed more frequently. Unless Crude manip-
ulates either its definition of local probability of a data item
(pi) or the number of references issued by a BGClient, the
results of Table 1 remain unchanged.

A variant of Crude, named Normalized-Crude, defines the

local probability of a data item i as pi =
pi(M,θ)

∑mk
k=1

pk(M,θ)
. This

definition utilizes M (instead of mk) to normalize the prob-
ability of data items assigned to each BGClient. With one
node, it is identical to the centralized Zipfian because its de-
nominator equals 1 (mi = M and the sum of the probability
of data items equals 1). With more than one node, the global
probabilities produced by Normalized-Crude are more uni-
form than Crude, see Figure 2.b assuming O = 3×Ok. Note
that the most popular data item with N = 1 has a global
probability that is almost twice that with N = 3. Section 4

Data item Zipfian/Crude with N = 1 Crude with N = 3
i pi(12, 0.01) = qi(12, 0.01, 1) A[i] pi(4, 0.01) qi(4, 0.01, 3)
1 0.319014588 0.319014588 0.477558748 0.159186249
2 0.160616755 0.479631343 0.240440216 0.080146739
3 0.107512881 0.587144224 0.160944731 0.053648244
4 0.080866966 0.668011191 0.121056305 0.040352102
5 0.064838094 0.732849284 0.477558748 0.159186249
6 0.054130346 0.786979631 0.240440216 0.080146739
7 0.046469017 0.833448647 0.160944731 0.053648244
8 0.04071472 0.874163368 0.121056305 0.040352102
9 0.036233514 0.910396882 0.477558748 0.159186249
10 0.032644539 0.943041421 0.240440216 0.080146739
11 0.029705152 0.972746574 0.160944731 0.053648244
12 0.027253426 1 0.121056305 0.040352102

Table 1: Example with 12 data items and θ=0.01.

Figure 2: qi(M, θ,N) of data items with three different techniques, M=12, θ=0.01, and N={1, 3}.

shows that with a minor adjustment, Normalized-Crude is
transformed into the final solution.

4. D-ZIPFIAN
We present D-Zipfian assuming BGClients are homoge-

neous and produce requests at approximately the same rate.
Subsequently, Section 4.2 extends the discussion to hetero-
geneous BGClients that produce requests at different rates.

4.1 Homogeneous BGClients
With N BGClients, D-Zipfian constructs N clusters such

that the sum of the probability of data items assigned to each
cluster is 1

N
. Given a cluster k consisting of mk elements

and assigned to BGClient k, D-Zipfian overrides the local
probability of each data item i as follows:

pi =
pi(M, θ)

∑mk
m=1 pi(M, θ)

(3)

This definition of local probability is identical to that used
by Normalized-Crude. D-Zipfian is different because it con-
structs clusters by requiring the sum of probability of data
items assigned to one cluster to approximate 1

N
. Thus, de-

nominator of Equation 3 approximates 1
N
. Details of D-

Zipfian can be summarized in two steps.
In this first step, BGCoord computes the probability of

access to the M data items using Equation 1. Next, it con-
structs N clusters of data items such that the sum of the
probability of the mk data items assigned to cluster k is 1

N
,

∑mk
i=1 pi(M, θ) = 1

N
. Finally, it assigns cluster k to BG-

Client k by transmitting4 the identity of its data items to

4Alternatively, with a deterministic technique to partition
data items into clusters, each BGClient may execute the

BGClient k. (A heuristic to construct clusters is described
in the following paragraphs.)

In the second step, each BGClient adjusts the probability
of its assigned data items using Equation 3. Note that the
denominator of Equation 3 approximates 1

N
because BGCo-

ord assigned objects to each BGClient with the objective to
approximate 1

N
. Finally, each BGClient uses its computed

probabilities to generate array A to produce data items, see
Section 2. Generation of the requests by each BGClient is
independent of the other BGClients.

One may construct clusters of Step 1 using a variety of
heuristics. We use the following simple heuristic. After BG-
Coord computes the quota for each BGClient k, Qk = 1

N
, it

assigns data items to the BGClients in a round-robin manner
starting with the data item that has the highest probability.
Once it encounters a BGClient whose Qk is exhausted, BG-
Coord attempts to assign the data item with the lowest prob-
ability to this BGClient as long as its Qk is not exceeded.
Otherwise, it removes this BGClient from the list of candi-
dates for data item assignment. It proceeds to repeat this
process until it either assigns all data items to BGClients or
runs out of BGClients. If the later, the coordinator assigns
the remaining data items to one of the BGClients5.

Figure 2.c shows D-Zipfian’s produced probability with 1
and 3 BGClients and 12 data items. When compared with
Figures 2.a and 2.b, D-Zipfian approximates the original dis-
tribution closely.

We use chi-square statistic to compare the distributions
obtained with N = 1 with those obtained using N > 1.
The chi-square statistic with N > 1 is computed as follows:

same technique independently to compute its mk assigned
objects.
5With the discussions of Section 4.2, this is the fastest BG-
Client always.

2 4 8 16 64

10
−12

10
−10

10
−8

10
−6

10
−2

10
0

N

θ = 0.58
θ = 0.27

θ = 0.01

χ2

Figure 3: χ2 analysis of centralized Zipfian with D-
Zipfian as a function of N , M=10K.

Figure 4: χ2 analysis of centralized Zipfian with D-
Zipfian as a function of θ with different number of
data items, M .

χ2 =
∑M

i=1
(qi(M,θ,N)−qi(M,θ,1))2

qi(M,θ,1)
. A smaller value of χ2 is

more desirable. When χ2 = 0, it means the probability
distribution with N > 0 is identical to that with N = 1.
Figure 3 shows the χ2 statistic as a function of N BG-

Clients with 10,000 data items and three different θ val-
ues. A smaller θ value results in a more skewed distribu-
tion. Obtained results show distributions with a handful of
BGClients (N ≤ 8) are almost identical to N = 1 as χ2

value is extremely small. With tens of BGClients, the χ2

value is higher because there is a higher chance of the sum
of probabilities assigned to each BGClient to deviate from
1
N
. This is specially true with a more skewed distribution,

θ=0.01. One way to enable D-Zipfian to better approximate
a probability of 1

N
for each BGClient is to increase the num-

ber of data items, M . This is shown in Figure 4 with three
different values of M and θ=0.01. As we increase the value
of M , the χ2 statistic becomes smaller and approaches zero.

4.2 Heterogeneous BGClients
It is rare for one to purchase PCs that provide identi-

cal performance. As an example, on January 24, 2012, we
purchased four identical Desktop computers configured with
Intel i7-2600 processors, 16 Gigabyte of memory, and 1 TB
of disk storage. When using them as BGClients, we ob-
served one node to be considerably faster than the others.
This fast node is almost twice faster than the slowest node.
This discrepancy violates the assumption of Section 4.1 that
withN BGClients, each BGClient issues 1

N
of requests. This

increases the error (χ2) between the distributions observed
with N > 1 and N = 1. As an example, Table 2 shows χ2

observed with five different configurations of four heteroge-
neous BGClients. Ri denotes the rate at which a BGClient
issues requests, see the first four columns of Table 2. The
last column shows the χ2 value when θ=0.27, comparing

R1 R2 R3 R4 χ2

1 1 2 2 0.11
1 1.25 1.5 2 0.07
1 2 2 2 0.06
1 1 1 2 0.12
1 4 4 4 0.16

Table 2: Processing rate of four BGClients and their
impact on the χ2 statistic, N=4, M=10K, θ=0.27.

R1 R2 R3 R4 χ2

1 1 2 2 1.91E-08
1 1.25 1.5 2 1.49E-10
1 2 2 2 1.08E-09
1 1 1 2 1.19E-10
1 4 4 4 6.13E-09

Table 3: χ2 improves dramatically with the refined
D-Zipfian, N=4, M=10K, θ=0.27.

the observed theoretical6 probabilities with 1 BGClient, i.e.,
N = 1. Each row corresponds to a different configuration
of BGClients. For example, the first corresponds to a mix
of 4 BGClients where two BGClients are twice faster than
the other two BGClients. This results in errors (χ2 values)
significantly higher than those shown in Figure 3.

To address this limitation, we change the first step of D-
Zipfian (see Section 4.1) to construct clusters for each BG-
Client such that their total assigned probability is propor-
tional to the rate at which they can issue requests. Its details
are as follows. Step 1 assigns objects to BGClient k with the
objective to approximate a total probability of Rk∑

N
j=1 Rj

for

this BGClient (instead of 1
N
). With this change, the distri-

bution with N BGClients becomes almost identical to that
of one BGClient, see Table 3.

5. DISCUSSION
Section 4.2 used the observed theoretical probabilities by

considering the local probability of a data item in combi-

nation with the number of requests, Ok×pi(M,θ)

O×

∑mk
j=1 pj(M,θ)

. This

study does not consider the actual generation of requests
using a random number generator because it would require
a too long a diversion from our main topic. We do wish to
note that the considered probabilities are the foundation of
generating requests and, without them, it is difficult (if not
impossible) to generate references that produce a Zipfian
distribution. An implementation of D-Zipfian with actual
request generation is analyzed in Figure 5. The y-axis of
this figure shows χ2 statistic, quantifying the difference in
observed probabilities with a centralized Zipfian when com-
pared with D-Zipfian and different degrees of parallelism
(x-axis). As we increase the number of issued requests, D-
Zipfian resembles its centralized counterpart more closely.

With Section 4.1, one may apply the concepts of Sec-
tion 4.2 to reduce the observed χ2 values by several orders

6We compute the observed theoretical probabilities by re-
quiring each BGClient k to multiply its computed proba-
bilities for a data item with its number of issued requests
divided by the total number of requests issued by all the

BGClients, Ok×pi(M,θ)

O×

∑mk
j=1 pj(M,θ)

.

Figure 5: χ2 analysis of an implementation of D-
Zipfian generating requests. This analysis compares
centralized Zipfian’s probability for different data
items with D-Zipfian as a function of different de-
grees of parallelism (x-axis). M=10,000, θ=0.27.

of magnitude and very close to zero. The idea is as follows.
Once objects are assigned to the different BGClients, the
number of references issued by a BGClient k is normalized
relative to the total probability of its assigned objects. Thus,
assuming the benchmark issues a total of O requests, each
BGClient k would issue Ok requests:

Ok = O ×

∑mk
i=1 pi(M, θ)

∑N

j=1

∑mj

i=1 pi(M, θ)
(4)

While this enhances the χ2 statistic dramatically, its poten-
tial usefulness is application specific. For example, a bench-
marking framework may consist of a ramp-up, a ramp-down,
and a steady state. Such a framework collects its observa-
tions during its steady state. The steady state might be de-
fined as either a duration identified by conditions that mark
the ramp-up and the ramp-down phases or a fixed number
of requests. With the former, O is not known in advance
and the system may not use Equation 4. Even when O

exists, different values of Ok might be undesirable because
different BGClients finish at different times. This is because
participating nodes are assumed to be identical and those
BGClients with the lowest Ok finish sooner, reducing the
degree of parallelism.
We considered constructing V virtual BGClients (V ≥ N)

with several such BGClients mapped to one physical BG-
Client [7, 18, 15]. This is beneficial as long as it better ap-
proximates the quota assigned to each physical BGClient.
In our experiments, we observed negligible improvement be-
cause approximating the appropriate quota for each virtual
BGClient becomes more challenging as we increase the value
of V , see discussions of Figure 3 in Section 4.1.

6. CONCLUSIONS
This paper presents D-Zipfian, a parallel algorithm that

executes on N nodes that reference a mutually exclusive
subset of data items and produce a Zipfian distribution that
is independent of N . D-Zipfian considers the rate at which
nodes issue requests in order to produce a distribution com-
parable to one node generating the distribution. This tech-
nique is an essential component of a scalable benchmarking
framework (e.g., BG [3] or YCSB++ [12]) to evaluate the
performance of a scalable data store.

7. ACKNOWLEDGMENTS
We thank Jason Yap and our anonymous reviewers for

their insights and valuable comments.

8. REFERENCES
[1] C. Aniszczyk. Caching with Twemcache,

http://engineering.twitter.com/2012/07/caching-with-
twemcache.html.

[2] Anon. A Measure of Transaction Processing Power.
Datamation, April 1985.

[3] S. Barahmand and S. Ghandeharizadeh. BG: A Benchmark
to Evaluate Interactive Social Networking Actions. CoRR,
Proceedings of 2013 CIDR, abs/0913.1780, January 2013.

[4] R. Cattell. Scalable SQL and NoSQL Data Stores.
SIGMOD Rec., 39:12–27, May 2011.

[5] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling
Policies for an On-Demand Video Server with Batching. In
2nd ACM Multimedia Conference, October 1994.

[6] R. Fan and N. Lynch. Gradient Clock Synchronization. In
Proceedings of the twenty-third annual ACM symposium on
Principles of distributed computing, pages 320–327, 2004.

[7] S. Ghandeharizadeh and D. J. DeWitt. Hybrid-Range
Partitioning Strategy: A New Declustering Strategy for
Multiprocessor Database Machines. In 16th International
Conference on Very Large Data Bases, pages 481–492,
1990.

[8] S. Ghandeharizadeh, J. Yap, and S. Barahmand.
COSAR-CQN: An Application Transparent Approach to
Cache Consistency. In Twenty First International
Conference On Software Engineering and Data
Engineering, Los Angeles, CA, Best Paper Award, 2012.

[9] K. Iwanicki, M. van Steen, and S. Voulgaris. Gossip-based
Clock Synchronization for Large Decentralized Systems. In
Proceedings of the Second IEEE international conference
on Self-Managed Networks, Systems, and Services, pages
28–42, 2006.

[10] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM, 21(7):558–565, Jul
1978.

[11] D. L. Mills. On the Accuracy and Stablility of Clocks
Synchronized by the Network Time Protocol in the Internet
System. SIGCOMM Comput. Commun. Rev., 20(1),
December 1989.

[12] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao,
J. López, G. Gibson, A. Fuchs, and B. Rinaldi. YCSB++:
Benchmarking and Performance Debugging Advanced
Features in Scalable Table Stores. In Cloud Computing,
New York, NY, USA, 2011. ACM.

[13] D. Patterson. For Better or Worse, Benchmarks Shape a
Field. Communications of the ACM, 55, July 2012.

[14] R. R and R. Greenstreet. Toward Higher Precision.
Commun. ACM, 55(10):38–47, October 2012.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A Scalable Content-Addressable Network. In
Proceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, pages 161–172, Aug. 2001.

[16] P. Saab. Scaling memcached at Facebook,
https://www.facebook.com/note.php?note id=39391378919.

[17] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The Case
for Application Specific Benchmarking. In HotOS, 1999.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In ACM SIGCOMM,
pages 149–160, San Diego, California, Aug. 2001.

[19] M. Stonebraker. New Opportunities for New SQL.
Communications of the ACM, BLOG@ACM, 55, November
2012.

[20] G. K. Zipf. Relative Frequency as a Determinant of
Phonetic Change. Harvard Studies in Classified Philiology,
Volume XL, 1929.

