
Using Similarity Distance for Performance Prediction of
the Query Optimization Process

Anisoara Nica
SAP AG

Waterloo, Ontario, Canada
Anisoara.Nica@sap.com

Stephen Chou
Department of Electrical and Computer

Engineering, University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT
Query optimization is a sophisticated process whose resource
consumption and quality of the best execution plan depends
on the query complexity, available resources of the RDBMS
server, and the current instance of the database. For a self-
managing RDBMS such as SAP SQL Anywhere, the query
optimizer must adapt each optimization process to the cur-
rent resources as these servers are run in highly diverse en-
vironments with no DBA for tuning, running mixed work-
loads with little correlation between query complexity, its
execution time, or database size. The main goal of the work
presented in this paper is to be able to dynamically choose a
join enumeration algorithm among the algorithms available
to the query optimizer based on the known characteristics
of the algorithms, the query complexity and its expensive-
ness, and the available resources for the optimization pro-
cess. First, the paper discusses the experimental results of
the optimization time breakdown and the memory consump-
tion for a set of join enumeration algorithms ranging from
highly heuristics algorithms to dynamic programming algo-
rithms with exhaustive bushy trees enumeration. Next, we
present a novel technique to predict the optimization time
and memory consumption for a current query by using sim-
ilarity distances between its query graph and a set of etalon
queries with known performance. The new technique can be
used by any query optimizer for choosing among join enu-
meration algorithms, or optimization levels, based on such
characteristics as query complexity and available resources.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing ; H.2.3 [Database Management]: Languages—Query
Languages

Keywords
Similarity Measure, Query Graph, Etalon Query, Query Op-
timization, Enumeration Algorithm, sql Anywhere, Sybase

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest 2013 June 24, 2013, New York, NY, U.S.A
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION AND MOTIVATION
sql Anywhere1[1] is a self-managing rdbms with high

reliability, high performance, synchronization capabilities,
small footprint, and a full range of sql features running on
highly diverse platforms. The sql Anywhere Optimizer [9,
10, 11, 12] optimizes each query at the open time, and it
is designed to be highly adaptable to the query workload,
system resources available to the optimization process, and
the state of the database server. The goal of this work is
to introduce a new level of adaptability to the optimization
process to balance the optimization time and resource con-
sumptions during optimization, on one side, with the com-
plexity and expensiveness of the query, on the other side. In
our experience, the complexity of the query is uncorrelated
to its execution time, hence, the optimization process must
behave differently for the same query optimized under dif-
ferent conditions, e.g., the optimization time cannot exceed
the execution time. The join enumeration algorithm, used
for a particular optimization, is the dominant factor in both
the optimization time and the memory consumption, hence,
providing a set of join enumeration algorithms to choose
from is a way to provide this extra dimension to adaptabil-
ity. First, we need to quantify particular subphases of the
optimization process and understand which properties de-
pend on the complexity of the query (i.e., its query graph)
and which properties depend on the expensiveness of the
query. As the query complexity depends only of its query
graph, properties of the optimization process which depend
only of its complexity can be predicted just by analyzing
the query graph. Hence, a cache of properties of previously
optimized queries can be used to predict these properties for
a current query based only of its query graph.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the findings of how different join enumer-
ation algorithms use system resources during optimization
process. One goal of detailed measurement of the resource
consumption is to understand which operations of the query
optimization depend exclusively on the query topology, and
which operations depend mostly on the current database
state such as table sizes, column statistics, etc.

Section 3 introduces a novel technique based on using
previously observed resource consumption, for different join
enumeration algorithms, to estimate the resource consump-
tion for a current query if a particular algorithm will be run.
We use the detailed measurements for a set of known etalon

1sql Anywhere are trademarks of SAP AG. Other company
or product names referenced in this paper are trademarks
and/or servicemarks of their respective companies.

queries2 to estimate performance of the join enumeration
algorithms for current queries. By contrast, previous work
on optimization time estimation is based on enumerating
some part of the search space, before the actual optimiza-
tion [4, 13]. We describe the etalon similarity measure and
present the experimental results of applying this technique
to a benchmark of random queries.

2. ON RESOURCE CONSUMPTION OF JOIN
ENUMERATION ALGORITHMS

The SQL Anywhere Optimizer has a set of join enumer-
ation algorithms with highly diverse properties related to
what search space is generated by each algorithm, how log-
ical enumeration, physical plan generation, and cost-based
and logical pruning are implemented. These properties de-
termine the resource consumption as well as the quality of
the best plan generated by each algorithm. All algorithms
share the same internal representation of a query (normal-
ized join operator trees [10]), data structures such as the
memoization table, special memory heaps, the cost model,
etc. Because of these common characteristics, this imple-
mentation is ideal to analyze and compare the algorithms’
resource consumption. The optimization process starts by
obtaining an initial upper bound cost (i.e., the query’s ex-
pensiveness) using the cheap backtracking algorithm - the
upper bound cost is used for choosing a join enumeration
algorithm, and for global cost-based pruning during join enu-
meration. In SQL Anywhere, statistics about the optimiza-
tion process can be logged and include optimization time
breakdown and memory usage for particular subphases3.
The properties of the algorithms which determine the op-

timization time are described in Table 1, while experimental
results of actual optimization time breakdown, memory con-
sumption, and estimated runtime cost are shown in Figures
1 and 2. For optimization time breakdown, we measured
time spent for operations related to the logical enumera-
tion phase (enumerating logical partitions, memoization ta-
ble management), the plan generation phase (building phys-
ical plans, costing, pruning, saving the best plans in the
memoization table), miscellaneous times such as obtaining
the initial upper bound, initializing the optimizer structures,
partition management for algorithms such as ordered-DPhyp
and parallel-ordered-DPhyp, cleanup time. A large body
of work exists for optimizing the logical enumeration phase
when exhaustive bushy three enumeration is performed [2,
7, 3]. However, as found by [4] and our own experiments,
enumeration time is not the main component of the opti-
mization time, but is only a small fraction, in the range of
5% − 25%. Moreover, the plan generation phase (including
costing and pruning of physical plans) is by far the most
expensive part of the optimization process. In the past,
we experimented with new algorithms trying to reduce as
much as possible the plan generation time: ordered-DPhyp
reduces this time by costing fewer partitions, while parallel-
ordered-DPhyp reduces it to almost 0, by parallelizing the
plan generation phase [9]. As expected, these improvements
added new times for partition management, as well as extra
memory consumption for parallel-ordered-DPhyp (Figure 1).

2From French, etalon means standard, something used as a
measure for comparative evaluations.
3Visualization and comparison of logged data can be done
using two research prototypes [11, 12].

3. RESOURCE ESTIMATION FOR A QUERY
OPTIMIZATION PROCESS

In any query optimizer using dynamic programming-based
algorithms the memory consumption and the runtime for
logical enumeration depend on the number of connected sub-
graphs - denoted here as csgs - and the number of enumer-
ated logical partitions - denoted as csg-cmp-pairs . Both
measures csgs and csg-cmp-pairs depend only of the query
graph, i.e., the query complexity, hence, any resource con-
sumption directly related to these two measures will be sim-
ilar for similar query graphs, regardless of other characteris-
tics such as the query expensiveness. The problem of finding
the number of connected subgraphs csgs and the number of
csg-cmp-pairs for a random query graph is intractable. In
contrast with previous work [4, 13], we propose here a new
approach in estimating the memory and CPU consumption
of a query optimization process based on properties of a set
of E etalon queries for which the performance was previously
observed. The only information needed for each etalon query
is its degree sequence used for calculating etalon similarity
measure, and a set of statistics for each join enumeration al-
gorithm, such as CPU and memory consumption, obtained
when an etalon query was optimized by each algorithm.

The set of etalon queries can be built, for example, during
a calibration process when each join enumeration algorithm
is run for each etalon query and optimization statistics re-
lated to resource consumption are saved in a catalog table.
Note that the properties of the etalon queries depend on
the implementation of the query optimizer, the machine the
server is running on, etc., hence these properties must be re-
computed for a specific server installation. Moreover, during
the usual RDBMS operations, new queries can be added to
the set of etalon queries E after it is optimized. If, for a cur-
rent queryQ, we can determine that its query graph is ’close’
to an etalon query eQ ∈ E , then we can predict that Q, when
optimized by a certain algorithm, will have the resource con-
sumption similar to the optimization statistics of eQ. This
estimation process can be used to choose among the join
enumeration algorithms based on the resources available to
the query optimizer given the current state of the RDBMS
server: e.g., if the server is very busy with concurrent con-
nections and it is low in available memory, then we cannot
use a parallel join enumeration algorithm or a join enumer-
ation algorithm requiring more memory than the available
amount. This technique can be used by any database system
using dynamic programming-based algorithms for join enu-
meration, with the calibration process computing the prop-
erties specific to that server.

In the following we present a method for determining if
two query graphs are ’close’ based on the similarity measure
described in [5]. A similarity measure between two graphs
is generally used to establish upper bounds for graph invari-
ants: two graphs share a certain property if the correspond-
ing similarity measure between them is high.

The similarity measure studied in [5] provides an upper
bound of the size of the maximum common edge subgraph
(MCES) between two graphs. The size of MCES is strongly
connected with the number of csgs and the number of csg-
cmp-pairs , hence, as our tests show, graphs with large etalon
similarity measure have similar numbers for csgs and csg-
cmp-pairs . As the formula for computing the similarity
measure is only dependent of the degree vectors, the time to

Terminology: LEP = Logical Enumeration Phase, PGP = Plan Generation Phase
csgs = the number of connected subgraphs, csg-cmp-pairs = the number of logical partitions

− Exhaustive Bushy Trees Enumeration algorithms include DPhyp, TopDownBranch, TopDown, ordered-DPhyp,and
parallel-ordered-DPhyp.These algorithms enumerate all csg-cmp-pairs and use a memoization table where each connected
subgraph has an entry. ordered-DPhyp optimizes the time spent in PGP by reducing the number of enumerated csg-cmp-pairs
for which physical plans are generated. parallel-ordered-DPhyp reduces the PGP time nearly to 0 by executing in parallel all
physical plan generation. parallel-ordered-DPhyp uses the fact that algorithms such as DPhyp, TopDownBranch, TopDown
enumerate a csg-cmp-pair (S1, S2) if an only if both S1 and S2 connected subgraphs have already enumerated all their
partitions, hence the PGP phase can be applied to both S1 and S2 in parallel with the enumeration thread. The algorithm
uses mutex-free memoization table. The main drawback of the current implementation is the increased memory usage of the
parallel-ordered-DPhyp as more memory is used for each memoization table entry for parallel management. The memory usage
comparison for cycle queries of size 17 is shown in Figure 1. The breakdown of the optimization time for these algorithms are
depicted in Figures 1 and 4, with PGP time highly reduced for ordered-DPhyp and close to 0 for parallel-ordered-DPhyp.
− Highly Heuristic algorithms which enumerate bushy trees are simplified-DPhyp and MinCutHyp. Both enumerate, in LEP
only a small subspace of the whole bushy trees space. Hence, both LEP time and PGP time can potentially be highly reduced.
However, the quality of the best execution plan found by these algorithms can be very low: Figure 1 depicts examples of
cycle queries of size 17 which have the estimated time for the best plans found by these two algorithms 1.5 to 3 times larger
than the plans found by ordered-DPhyp for example.
− Highly Heuristic algorithms which enumerate only left-deep trees are backtracking and backtrackingM.Both algorithms
employ heuristics for pruning whole subspaces when a subspace proves to be uninteresting. However, similar to simplified-
DPhyp and MinCutHyp, the quality of the best plans can be very low. Figure 1 shows the estimated cost of the best plans
found by these two algorithms up to 6 times larger than the best plans found by other algorithms.

DPhyp [7] Top-
DownBranch
[3] TopDown[2]

ordered-
DPhyp[9]

parallel-
ordered-
DPhyp[9]

simplified-
DPhyp [8]

MinCutHyp [6] backtracking
backtrackingM
[11]

Logical Search
Space

all bushy trees all bushy trees all bushy trees some bushy
trees

some bushy
trees

some left-deep
trees

Logical Enu-
meration Phase
(LEP)

interleaved
with PGP

prior to PGP parallel with
PGP

interleaved
with PGP

interleaved
with PGP

no logical plans
are enumerated

Logical Parti-
tion Pruning

none - PGP is
applied to all
csg-cmp-pairs

PGP is ap-
plied to a
subset of all
csg-cmp-pairs

PGP is ap-
plied to a
subset of all
csg-cmp-pairs

PGP is applied
to the enumer-
ated csg-cmp-
pairs

PGP is applied
to the enumer-
ated csg-cmp-
pairs

only PGP:
physical plans
are directly
enumerated

Plan Gener-
ation Phase
(PGP)

interleaved
with LEP

follows LEP parallel with
LEP

interleaved
with LEP

interleaved
with LEP

only PGP

Cost-based
Pruning

global and lo-
cal cost-based
pruning

global and lo-
cal cost-based
pruning

global and lo-
cal cost-based
pruning

global and lo-
cal cost-based
pruning

global and lo-
cal cost-based
pruning

global cost-
based pruning

LEP Optimiza-
tion Time

no optimization no optimization no optimization highly reduced
due to fewer
enumerated
csg-cmp-pairs

highly reduced
due to fewer
enumerated
csg-cmp-pairs

no LEP

PGP Optimiza-
tion Time

no optimization highly reduced:
PGP is done
on a subset
of enumerated
csg-cmp-pairs

almost 0: PGP
in parallel with
LEP

highly reduced
due to fewer
enumerated
csg-cmp-pairs

highly reduced
due to fewer
enumerated
csg-cmp-pairs

highly reduced
due to only left-
deep trees

Comments exhaustive
bottom-
up/top-down
enumeration;
first best plan
is found very
late;

exhaustive
bottom-up
enumeration;
reduced PGP
time

exhaustive
bottom-up enu-
meration; LEP
in parallel with
PGP; highly
reduced PGP
time

simplification
of the query
graph before
LEP; highly
heuristic

top-down enu-
meration using
the hypergraph
min-cut algo-
rithm; highly
heuristic

left-deep trees
only; reduced
PGP time; lo-
cal cost-based
pruning with
memoization
table; highly
heuristic

Table 1: Properties of the Join Enumeration Algorithms

compute these similarities is very small, e.g., less than 100ms
for 1000 etalon queries. Moreover, the similarity distances
are computed only for queries estimated to be expensive as
discussed in Section 2.
Let Q = (V Q, EQ) a query graph with |V Q| = N tables,

V Q = {vQ1 , . . . , vQN}. The degree d(v) of the vertex v is the
number of vertices (tables) connected to v. The vertices in
the set V Q are sorted in non-increasing order of degree, i.e.,
d(vQk) ≥ d(vQk+1), for all 1 ≤ k < N : (d(vQ1), . . . , d(vQN)) is
called the degree sequence of the query Q.
The esim(Q,X) etalon similarity measure between Q =

(V Q, EQ) and an etalon query X, represented only by its
degree sequence (d(vX1), . . . , d(vXN)), is:

E(Q,X) = � 1
2
×∑

i=1,N (min(d(vQi), d(vXi)))�

esim(Q,X) = (N+E(Q,X))2

(N+|EQ|)(N+| 1
2
×∑

1≤j≤N d(vX
i)|)

For a random query Q = (V Q, EQ) with |V Q| = N , its
etalon query eQ is chosen, from the etalon queries of size N :
esim(Q, eQ) = max{Y |Y ∈E,|V Y |=N}esim(Q, Y).
If esim(Q, eQ) is sufficiently large, the number of the con-
nected subgraphs csgs and the number of csg-cmp-pairs of
the query graph Q are closely related to eQ, i.e., csgs (Q) ∼
csgs (eQ) and csg-cmp-pairs (Q) ∼ csg-cmp-pairs (eQ).
Figure 2 shows the actual and estimated numbers of csgs

and csg-cmp-pairs for 60 randomly generated queries, and
also the actual optimization times for the queries 18-24 and
five etalon queries: chain, cycle, star, grid, and clique. The
graphs of the queries are generated randomly for given num-
bers of vertices and edges. For each query Q, its correspond-
ing x-axis label is of the formQ(N, |EQ|) eQ(N)(esim(Q, eQ))
depicting its etalon query eQ. The lines connecting two
actual optimization time bars, in the bottom chart, link a
query Q with its etalon query eQ chosen as described above.
The actual optimization times in Figure 2 are the times
obtained using DPhyp algorithm, but all other algorithms
which exhaustively enumerate bushy trees - ordered-DPhyp,
parallel-DPhyp, TopDown, TopDownBranch - have the opti-
mization time of the etalon query eQ very close to the opti-
mization time of Q for that particular algorithm. The highly
heuristic algorithms such as backtracking, or simplified-DPhyp
don’t exhibit the same behavior as their enumeration time
is not correlated to the number of csgs and csg-cmp-pairs .

4. CONCLUSION
In this paper, we present the experimental results of how

different join enumeration algorithms use system resources
during optimization process. All the studied join enumera-
tion algorithms are implemented in the SQL Anywhere Op-
timizer, sharing the same internal representation of a query,
and data structures, hence their performance can be ana-
lyzed and compared. Our findings revealed that enumera-
tion time is only a small fraction of the total optimization
time, in the range of 5% − 25%, while the plan generation
phase (including costing, pruning of physical plans, saving
physical best plans) is by far the most expensive part of
the optimization process. Secondly, we introduce a novel
technique based on using previously observed resource con-
sumption to estimate the resource consumption for a current
query. The paper describes the etalon similarity measure
between a query and the etalon queries and presents the
experimental results of applying this technique to a bench-

mark of random queries. The results are very encouraging as
the etalon query with the highest etalon similarity measure
has similar optimization time with the random query for al-
gorithms with exhaustive bushy trees enumeration. These
techniques can be used by any query optimizer using dy-
namic programming-based algorithms for join enumeration.

5. REFERENCES
[1] M. Abouzour, I. T. Bowman, P. Bumbulis, D. E.

DeHaan, A. K. Goel, A. Nica, G. N. Paulley, and
J. Smirnios. Database self-management: Taming the
monster. ieee Data Engineering Bulletin, 34(4):3–11,
2011.

[2] D. DeHaan and F. W. Tompa. Optimal top-down join
enumeration. In acm sigmod International
Conference on Management of Data, pages 785–796,
Beijing, China, June 2007.

[3] P. Fender and G. Moerkotte. A new, highly efficient,
and easy to implement top-down join enumeration
algorithm. In Proceedings, ieee International
Conference on Data Engineering, pages 864–875, 2011.

[4] I. F. Ilyas, J. Rao, G. M. Lohman, D. Gao, and E. T.
Lin. Estimating compilation time of a query optimizer.
In acm sigmod International Conference on
Management of Data, pages 373–384, June 2003.

[5] M. Johnson. Relating metrics, lines and variables
defined on graphs to problems in medicinal chemistry.
In Graph Theory and Its Applications to Algorithms
and Computer Science, New York, 1985. Wiley.

[6] R. Klimmek and F. Wagner. A simple hypergraph min
cut algorithm. Technical Report B 96-02, Bericht FU
Berlin Fachbereich Mathematik und Informatik, 1996.

[7] G. Moerkotte and T. Neumann. Dynamic
programming strikes back. In acm sigmod
International Conference on Management of Data,
pages 539–552, 2008.

[8] T. Neumann. Query simplification: graceful
degradation for join-order optimization. In acm
sigmod International Conference on Management of
Data, pages 403–414, 2009.

[9] A. Nica. A call for order in search space generation
process of query optimization. In Proceedings, ieee
icde Workshops (Self-Managing Database Systems
SMDB), Apr. 2011.

[10] A. Nica. Incremental maintenance of materialized
views with outerjoins. Information Systems, 37(5),
2012.

[11] A. Nica, D. S. Brotherston, and D. W. Hillis. Extreme
visualisation of the query optimizer search spaces. In
acm sigmod International Conference on
Management of Data, pages 1067–1070, June 2009.

[12] A. Nica, I. Charlesworth, and M. Panju. Analyzing
query optimization process: Portraits of join
enumeration algorithms. In Proceedings, 28th ieee
icde International Conference on Data Engineering.
ieee Computer Society Press, Apr. 2012.

[13] K. Ono and G. M. Lohman. Measuring the complexity
of join enumeration in query optimization. In
Proceedings of the 16th International Conference on
Very Large Data Bases, pages 314–325, Brisbane,
Australia, Aug. 1990. Morgan Kaufmann.

Figure 1: Optimization Time Breakdown, Estimated Cost, Memory Consumption for Cycle Queries

0

200

400

600

800

1000

1200

Q1
(5,

4)~
gri

d(5
)(0

.8)

Q2
(5,

4)~
cha

in(
5)(

1)
Q3

(5,
4)~

sta
r(5

)(1
)

Q4
(5,

4)~
gri

d(5
)(0

.8)

Q5
(5,

4)~
gri

d(5
)(0

.8)

Q6
(5,

4)~
gri

d(5
)(0

.8)

Q7
(5,

4)~
gri

d(5
)(0

.8)

Q8
(5,

4)~
cha

in(
5)(

1)
Q9

(5,
4)~

gri
d(5

)(0
.8)

Q1

0(5
,4)

~gr
id(

5)(
0.8

)
Q1

1(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
2(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

3(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
4(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

5(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
6(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

7(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
8(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

9(5
,8)

~cl
iqu

e(5
)(0

.9)

Q2
0(5

,8)
~cl

iqu
e(5

)(0
.9)

Q2

1(8
,7)

~st
ar(

8)(
0.8

)
Q2

2(8
,7)

~st
ar(

8)(
0.9

)
Q2

3(8
,7)

~st
ar(

8)(
0.9

)
Q2

4(8
,7)

~ch
ain

(8)
(0.

8)
Q2

5(8
,7)

~ch
ain

(8)
(0.

8)
Q2

6(8
,7)

~gr
id(

8)(
0.8

)
Q2

7(8
,7)

~ch
ain

(8)
(0.

9)
Q2

8(8
,7)

~st
ar(

8)(
0.9

)
Q2

9(8
,7)

~st
ar(

8)(
0.9

)
Q3

0(8
,7)

~ch
ain

(8)
(0.

8)
Q3

1(8
,14

)~g
rid

(8)
(0.

8)
Q3

2(8
,14

)~g
rid

(8)
(0.

8)
Q3

3(8
,14

)~g
rid

(8)
(0.

8)
Q3

4(8
,14

)~g
rid

(8)
(0.

8)
Q3

5(8
,14

)~g
rid

(8)
(0.

8)
Q3

6(8
,14

)~g
rid

(8)
(0.

8)
Q3

7(8
,14

)~g
rid

(8)
(0.

7)
Q3

8(8
,14

)~g
rid

(8)
(0.

8)
Q3

9(8
,14

)~g
rid

(8)
(0.

8)
Q4

0(8
,14

)~g
rid

(8)
(0.

8)
Q4

1(8
,28

)~c
liq

ue
(8)

(1)

Q4
2(8

,28
)~c

liq
ue

(8)
(1)

Q4

3(8
,28

)~c
liq

ue
(8)

(1)

Q4
4(8

,28
)~c

liq
ue

(8)
(1)

Q4

5(8
,28

)~c
liq

ue
(8)

(1)

Q4
6(8

,28
)~c

liq
ue

(8)
(1)

Q4

7(8
,28

)~c
liq

ue
(8)

(1)

Q4
8(8

,28
)~c

liq
ue

(8)
(1)

Q4

9(8
,28

)~c
liq

ue
(8)

(1)

Q5
0(8

,28
)~c

liq
ue

(8)
(1)

Q5

1(1
1,1

0)~
cha

in(
11

)(0
.8)

Q5

2(1
1,1

0)~
cha

in(
11

)(0
.7)

Q5

3(1
1,1

0)~
sta

r(1
1)(

0.9
)

Q5
4(1

1,1
0)~

sta
r(1

1)(
0.9

)
Q5

5(1
1,1

0)~
cha

in(
11

)(0
.8)

Q5

6(1
1,1

0)~
sta

r(1
1)(

0.9
)

Q5
7(1

1,1
0)~

cha
in(

11
)(0

.7)

Q5
8(1

1,1
0)~

cha
in(

11
)(0

.9)

Q5
9(1

1,1
0)~

sta
r(1

1)(
0.9

)
Q6

0(1
1,1

0)~
cha

in(
11

)(0
.7)

Connected Subgraphs (csgs)

Actual
Predicted

0

1000

2000

3000

4000

5000

6000

Q1
(5,

4)~
gri

d(5
)(0

.8)

Q2
(5,

4)~
cha

in(
5)(

1)
Q3

(5,
4)~

sta
r(5

)(1
)

Q4
(5,

4)~
gri

d(5
)(0

.8)

Q5
(5,

4)~
gri

d(5
)(0

.8)

Q6
(5,

4)~
gri

d(5
)(0

.8)

Q7
(5,

4)~
gri

d(5
)(0

.8)

Q8
(5,

4)~
cha

in(
5)(

1)
Q9

(5,
4)~

gri
d(5

)(0
.8)

Q1

0(5
,4)

~gr
id(

5)(
0.8

)
Q1

1(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
2(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

3(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
4(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

5(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
6(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

7(5
,8)

~cl
iqu

e(5
)(0

.9)

Q1
8(5

,8)
~cl

iqu
e(5

)(0
.9)

Q1

9(5
,8)

~cl
iqu

e(5
)(0

.9)

Q2
0(5

,8)
~cl

iqu
e(5

)(0
.9)

Q2

1(8
,7)

~st
ar(

8)(
0.8

)
Q2

2(8
,7)

~st
ar(

8)(
0.9

)
Q2

3(8
,7)

~st
ar(

8)(
0.9

)
Q2

4(8
,7)

~ch
ain

(8)
(0.

8)
Q2

5(8
,7)

~ch
ain

(8)
(0.

8)
Q2

6(8
,7)

~gr
id(

8)(
0.8

)
Q2

7(8
,7)

~ch
ain

(8)
(0.

9)
Q2

8(8
,7)

~st
ar(

8)(
0.9

)
Q2

9(8
,7)

~st
ar(

8)(
0.9

)
Q3

0(8
,7)

~ch
ain

(8)
(0.

8)
Q3

1(8
,14

)~g
rid

(8)
(0.

8)
Q3

2(8
,14

)~g
rid

(8)
(0.

8)
Q3

3(8
,14

)~g
rid

(8)
(0.

8)
Q3

4(8
,14

)~g
rid

(8)
(0.

8)
Q3

5(8
,14

)~g
rid

(8)
(0.

8)
Q3

6(8
,14

)~g
rid

(8)
(0.

8)
Q3

7(8
,14

)~g
rid

(8)
(0.

7)
Q3

8(8
,14

)~g
rid

(8)
(0.

8)
Q3

9(8
,14

)~g
rid

(8)
(0.

8)
Q4

0(8
,14

)~g
rid

(8)
(0.

8)
Q4

1(8
,28

)~c
liq

ue
(8)

(1)

Q4
2(8

,28
)~c

liq
ue

(8)
(1)

Q4

3(8
,28

)~c
liq

ue
(8)

(1)

Q4
4(8

,28
)~c

liq
ue

(8)
(1)

Q4

5(8
,28

)~c
liq

ue
(8)

(1)

Q4
6(8

,28
)~c

liq
ue

(8)
(1)

Q4

7(8
,28

)~c
liq

ue
(8)

(1)

Q4
8(8

,28
)~c

liq
ue

(8)
(1)

Q4

9(8
,28

)~c
liq

ue
(8)

(1)

Q5
0(8

,28
)~c

liq
ue

(8)
(1)

Q5

1(1
1,1

0)~
cha

in(
11

)(0
.8)

Q5

2(1
1,1

0)~
cha

in(
11

)(0
.7)

Q5

3(1
1,1

0)~
sta

r(1
1)(

0.9
)

Q5
4(1

1,1
0)~

sta
r(1

1)(
0.9

)
Q5

5(1
1,1

0)~
cha

in(
11

)(0
.8)

Q5

6(1
1,1

0)~
sta

r(1
1)(

0.9
)

Q5
7(1

1,1
0)~

cha
in(

11
)(0

.7)

Q5
8(1

1,1
0)~

cha
in(

11
)(0

.9)

Q5
9(1

1,1
0)~

sta
r(1

1)(
0.9

)
Q6

0(1
1,1

0)~
cha

in(
11

)(0
.7)

csg-cmp-pairs

Actual

Predicted

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Q1
8(
5,
8)
~c
liq
ue

ch
ai
n(
0.
69
)

cy
cl
e(
0.
77
)

st
ar
(0
.6
9)

gr
id
(0
.8
5)

cl
iq
ue
(0
.8
7)

Q1
9(
5,
8)
~c
liq
ue

ch
ai
n(
0.
69
)

cy
cl
e(
0.
77
)

st
ar
(0
.6
9)

gr
id
(0
.8
5)

cl
iq
ue
(0
.8
7)

Q2
0(
5,
8)
~c
liq
ue

ch
ai
n(
0.
69
)

cy
cl
e(
0.
77
)

st
ar
(0
.6
9)

gr
id
(0
.8
5)

cl
iq
ue
(0
.8
7)

Q2
1(
8,
7)
~s
ta
r

ch
ai
n(
0.
75
)

cy
cl
e(
0.
7)

st
ar
(0
.7
5)

gr
id
(0
.7
3)

cl
iq
ue
(0
.4
2)

Q2
2(
8,
7)
~s
ta
r

ch
ai
n(
0.
75
)

cy
cl
e(
0.
7)

st
ar
(0
.8
7)

gr
id
(0
.7
3)

cl
iq
ue
(0
.4
2)

Q2
3(
8,
7)
~s
ta
r

ch
ai
n(
0.
75
)

cy
cl
e(
0.
7)

st
ar
(0
.8
7)

gr
id
(0
.7
3)

cl
iq
ue
(0
.4
2)

Q2
4(
8,
7)
~c
ha
in

ch
ai
n(
0.
75
)

cy
cl
e(
0.
7)

st
ar
(0
.7
5)

gr
id
(0
.7
3)

cl
iq
ue
(0
.4
2)

Ti
m
e (
s)

Pre-/Post-Optimization Time

DP Partition Management Time

DP Clean-up Time

DP Enumeration Time (Table)

DP Enumeration Time

DP Plan Generation Phase - Costing Time

DP Plan Generation Phase - Work Time (Table)

DP Plan Generation Phase - Work Time

DP Plan Generation Phase - Pruning Time

DP Initial Upper Bound Time

DP Initialization Time

Figure 2: Similarity Measure: estimated and actual csgs , csg-cmp-pairs , and actual optimization times

