
Reversing Statistics for Scalable Test
Databases Generation

Entong Shen ∗

North Carolina State University
eshen@ncsu.edu

Lyublena Antova

Pivotal Inc. †
lantova@gopivotal.com

ABSTRACT
Testing the performance of database systems is commonly accom-
plished using synthetic data and workload generators such as TPC-
H and TPC-DS. Customer data and workloads are hard to obtain
due to their sensitive nature and prohibitively large sizes. As a
result, oftentimes the data management systems are not properly
tested before releasing, and performance-related bugs are commonly
discovered after deployment, when the cost of fixing is very high.
In this paper we propose RSGen, an approach to generating datasets
out of customer metadata information, including schema, integrity
constraints and statistics. RSGen enables generation of data that
closely matches the customer environment, and is fast, scalable and
extensible.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; D.2.5
[Software Engineering]: Testing and Debugging

General Terms
Algorithms, Design, Performance

Keywords
Data generation, database metadata, parallelization

1. INTRODUCTION
Improving the performance of database systems has been a widely

studied topic in the research community. While a number of syn-
thetic benchmarks exist to guide performance tests of database sys-
tems in various domains, including TPC-H [8], TPC-DS [7], Star
Schema [16], and others, these are far from representing realistic
customer use cases. However, often they are the only possibility, as
customer data and workloads are hard to obtain, due to their sen-
sitive nature. Moreover, they are usually very large which makes
transmission over the network hard if not impossible.
∗Work is done while author was an intern at Greenplum.
†Formerly Greenplum/EMC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBtest’13 June 24 2013, New York, NY, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2151-8/13/06 ...$15.00.

Existing synthetic benchmarks for testing the performance of
query engines suffer from several limitations:

• Fixed schema and workloads. The few available synthetic
data generators only offer a fixed schema and workload. While
those benchmarks may resemble a certain reporting scenario,
they cannot accommodate various schema and workloads in
real customer databases, which may have very distinct data
characteristics compared to the existing benchmarks.

• Limited control over the generated datasets. Synthetic
query generators do not offer enough flexibility in generat-
ing a variety of datasets. Data size is commonly the only
controllable parameter. Some generators like TPC-H allow
users to load from a pre-defined set of distributions, such as
normal or zipfian, but offer little extensibility, like adding
new tables, constraints, and custom distributions.

• Expensive and impractical. Recent work [2, 9, 18] has pro-
posed generating workload-aware datasets with the help of
constraint solvers. However, these do not scale well to the
amounts of data typically present in a customer dataset. See
Section 6 for a more detailed discussion on related work.

To overcome the limitations of existing data generators, we pro-
pose a mechanism for generating data from database metadata. The
metadata is usually less sensitive than the real data and significantly
smaller in size: in the order of megabytes compared to multiple ter-
abytes to petabytes commonly seen in customer use cases. Yet, it
retains critical information about database schema, integrity con-
straints and statistics on each column. The idea of ‘reversing’ the
metadata (especially the stats1) can benefit the following use cases:

• Troubleshoot customer issues. When customers experience
functional or performance related problems with the query
execution engine, the data generator can speed up resolv-
ing the issue in-house without requiring access to the client’s
production system.

• Quality assurance using real data. Testing the performance
of a database system on real data and workloads in addition
to synthetic benchmarks can greatly improve the robustness
of the system. Greenplum and many other database vendors
have customers in various industries, whose data and work-
loads naturally exhibit different characteristics, and may ex-
pose corner cases and hidden bugs in the systems.

• Tune query optimizers. The cardinality estimator and cost
model of a typical query optimizer heavily rely on the statis-

1In this paper we use ‘statistics’ and ‘stats’ interchangeably.

tics stored in the database catalog. Statistics only approxi-
mate the real data distribution. Thus, for two databases hav-
ing the same statistics, the optimizer will likely choose the
same query execution plan for a given query. However, they
may have different run-time performance when executed on
the two instances. RSGen can be extended to generate dif-
ferent databases with the same statistics by augmenting the
input with additional parameters that might not be captured
in the metadata.

• Generate datasets based on anonymized metadata. In
some cases, customers may be willing to share an anonymized
version of their data to the database vendor. Even in this case,
the problem of transmitting the data remains. A solution to
that is to anonymize the metadata, which is much smaller in
size, and generate datasets from that. There are readily avail-
able solutions for the anonymization of metadata and work-
load, which preserve statistical information, e.g. the ones
presented in [6] and in [12].

In this paper, we present RSGen (‘RS’ stands for ‘Reversing
Statistics’), a mechanism for automatic generation of datasets based
on metadata2. RSGen enables generation of datasets truthful to
the metadata, as demonstrated in our experimental section. It is de-
signed with speed and scalability in mind – RSGen uses a bucket
based model at its core, which is able to generate trillions of records
with minimum memory footage. The biggest challenge to the scal-
ability of a data generator is the handling of dependent columns.
We introduce a procedure called bucket alignment to break the de-
pendency while satisfying referential integrity constraints. Being
able to generate dependent columns independently is the basis for
the high parallelizability and hence the scalability of our approach.
In terms of extensibility, RSGen is agnostic to underlying database
system and can easily be extended to work with other systems, as
all metadata, such as table definitions, histograms and constraints
are translated into system-independent data structures. Moreover,
RSGen can be extended to support new types of constraints, his-
tograms etc. Experimental study shows that RSGen is fast, scal-
able and the generated databases have similar data characteristics
as the originals.

The rest of paper is organized as follows. We start off with some
preliminaries in Section 2. Section 3 describes the general architec-
ture and four components of RSGen, and Section 4 details on the
process of buckets generation and handling referential constraints.
Section 5 provides an experimental evaluation of our approach. Fi-
nally, we review related work in Section 6 before we conclude.

2. PRELIMINARIES

2.1 Database Statistics and Constraints
Most commercial database systems use statistics to compactly

represent data distribution. During query optimization, statistics
are used to estimate cardinality of intermediate results, and are a
building block in deciding the optimality of a query plan in cost-
based query optimizers.

The statistics model of Greenplum Database is based on the one
employed by PostgreSQL, see for example [11]. Statistics are col-
lected using the ANALYZE command and stored in the system cat-
alog, mainly in the pg_statistics table. Each entry in that
table represents column-level statistics, and contains among other
things the following information:
2In this paper, the term metadata includes schema information,
constraints and statistics.

• Fraction of NULL values
• Number of distinct values
• Average width in bytes
• Equi-depth histogram
• Most common values (MCV s) and their frequencies (MCF s)

In addition, the system catalog stores table-level statistics, includ-
ing total number of tuples, number of disk blocks, etc. In Green-
plum Database, this information is maintained in the pg_class
table in the system catalog.

Integrity constraints are another piece of metadata used by mod-
ern query optimizers to produce the optimal plan. Those typically
include unique, foreign key, and check constraints.

Greenplum Database provides several tools, which allow DBAs
to extract metadata information from the database, such as gpsd,
which collects metadata from the system catalog into a ‘.sql’ file,
and AMPERe [1], whose output format is XML-based.

2.2 Design Goals
Before we delve into the architecture of RSGen, we discuss

the principles and requirements that guided the design of RSGen.
Generally speaking, for a data generator to be useful in practice, it
must have the following properties:

• Fast and practical. The generator should be able to generate
large amounts of data in a feasible amount of time. This ex-
cludes approaches based on constraint solvers as the latter do
not scale well with the number of constraints, and statistics
typically generate a large number of constraints. See Sec-
tion 6 for a more detailed discussion on related work.

• Scalable. It is not uncommon to see customer datasets con-
taining trillions of records, and the data generator must scale
to support such use cases. Therefore being able to parallelize
the data generation is crucial to the scalability of the genera-
tor.

• Support of integrity constraints and common column cor-
relations. Correlations are present in nearly all datasets and
have great influence on the optimal plan choice, and thus
system performance. Correlations can either be enforced
through integrity constraints, such as uniqueness and refer-
ential constraints, or can be inferred from the data and be
present in multi-column histograms. Due to their impact on
performance, a data generator must take those into account.

• Truthful. To best model customer use cases, the generator
must preserve the statistical properties in the generated data
set, i.e. be truthful to the source data distribution and con-
straints of the original database.

• Extensible. It is desired that the generator can be extended
in multiple directions. First, it should be easy to add a new
source of input metadata, such as a new database system, or
input format. Second, as the database system evolves, the
generator must be updated to support improvements in the
statistical model. Last but not least, the data generator should
provide means to generate multiple datasets for the same in-
put metadata.

3. ARCHITECTURE
Figure 1 provides an overview of the architecture of RSGen.

Although RSGen is part of Greenplum’s development and test cy-
cles, its design is not bound to any specific database system. At

a high level, RSGen takes any kind of metadata dump as the in-
put and generates database tables along with a loading script as the
output. It consists of four interconnected modules described next.

3.1 Components
Metadata Store. The metadata store reads and maintains in a
system-independent manner various information, which commonly
appears in a database catalog such as schema, statistics and con-
straints. It contains one or more parsers, each of which handles one
type of input. Figure 1 shows the current implementation of two
parsers, which are able to handle metadata collected by gpsd and
AMPERe [1]. The parser then converts the metadata into internal
data structures of schema, stats and constraints maintained by the
metadata store for quick look-up later. For example, the buckets
generator (introduced below) may query the metadata store for the
data type of a specific column.

Schema Analyzer. The role of the schema analyzer is to inter-
pret and maintain referential integrity (i.e. foreign key constraints)
among columns. The schema analyzer builds a referential graph in
which each vertex is a column ID and each edge represents a ref-
erential constraint. This referential graph is naturally a DAG (di-
rected acyclic graph)3. We then topologically sort each connected
component to obtain a set of ordered lists of columns, which will
be fed into the bucket generator introduced next.

Buckets Generator. At the core of the RSGen database generator
is a data model based on a Bucket structure defined as follows
(constructor omitted):

public class Bucket {
Datum low;
Datum high;
long count;
long nDistinct;

}

where Datum is an abstract class we defined to represent a data
point of any type. The low and high indicate the lower and up-
per bound of data values within the bucket, while count is the
number of data points remain to be generated from the bucket.
nDistinct specifies the number of distinct values in the bucket.
This seemingly simple data structure is in fact quite powerful and
versatile in the sense that (1) it unifies common column stats such
as null fraction, number of unique values, MCVs, MCFs and his-
togram – all these stats can be mapped to a set of buckets, see de-
tails in Section 4.1); (2) the bucket based data model is central to
the massive parallelism design of RSGen. As we will discuss in
Section 4.2, a technique called ‘bucket alignment’ can be used to
pre-process the buckets such that referentially constrained columns
can be generated independently after the alignment. This is vital
for the speed and scalability of RSGen.

Tuple Writer. After the buckets are generated and aligned, the
tuple writer materializes the database tables by printing and push-
ing the tuples to the write buffer. In this process, each Datum is
mapped back to its original data type and printed accordingly. For
example, a value from the Date column is internally represented
as a Datum having a long variable and the tuple writer will print
out the value using string representation ‘MM-DD-YYYY’. The gen-
erated values can be materialized in both column-oriented, as well
as row-oriented fashion. For the initial implementation of RSGen
we chose the latter, which presents several advantages for us:
3Most commercial RDBMSs do not allow circular referencing.

Schema
Analyzer

Buckets
Generator

gpsd
parser

xml
parser

Metadata Store

Tuple
Writers

Output:
•  tables
•  load-data.sh

Input: metadata dump

RSGen	

Figure 1: Architecture of RSGen

• the ability to support intra-table constraints and correlations
like CHECK R.a > R.b

• the generated tuples can be immediately used for parallel
data loading, which is available in many commercial RDBMS.

Extending this to a column-oriented approach is straightforward,
and has benefits in scenarios where there are not many column cor-
relations, and the target table is column-oriented. A hybrid ap-
proach where only dependent columns are materialized together is
also easy to support in our framework.

3.2 Scalability and Extensibility
As we mentioned above, the bucket based data model is the key

to the scalability of RSGen. Specifically, it enables two layers of
parallelism: at the database level, different tables can be generated
in parallel after bucket alignment; at the table level, different parts
of a table can also be created at the same time. In our implemen-
tation of RSGen, the second layer is done by creating multiple
workers accessing the available buckets and pushing tuples to a
queue, which is then consumed by a tuple writer. Most constraint
types commonly found in a database, including key and foreign
key constraints, are easily parallelizable by our approach. We ac-
knowledge that other ‘exotic’ constraints that span across multiple
tables and involve arithmetics, for example ‘R.t+0.3∗S.t = W.t’,
may require explicitly referencing the generated values. We argue
that these are not commonly found in practice. RSGen is able to
support intra-table CHECK constraints by sacrificing the table level
parallelism. We will show in the experiment section that in most
cases RSGen is able to scale linearly when the size of the database
increases.

RSGen is designed with extensibility in mind from the very be-
ginning. With the separation of functionalities of the four modules,
RSGen is able to extend both vertically (supporting new types
of constraints) and horizontally (supporting metadata from other
RDBMS). Specifically, adapting RSGen to support other RDBMS
mainly requires writing a new metadata parser. In addition, if a dif-
ferent type of statistic is used (e.g. MS SQL Server uses MaxDiff
histogram instead of equi-depth histogram), the bucket generator
only needs to add the functionality of corresponding conforming
buckets, while the rest of the data generator remains unchanged.

4. DETAILS

4.1 Buckets Generation
In this part we provide some details of how to generate buckets

given the column stats provided by the metadata store. We will

Column A

Column B

b1
A

b1
B

Figure 2: Bucket alignment

focus on the stats available in the Greenplum Database, although
extension to other databases is straightforward. Recall from Sec-
tion 2.1 that the stats for each columns include NULL fraction,
number of distinct values, equi-depth histogram, and most com-
mon values (MCV s) and their frequencies (MCF s). Given the
statistics of a column C and target number of total values and dis-
tinct values N and nDistinct, respectively, the buckets generator
processes the statistics as follows:

1. Process null fraction nf :

new Bucket (
low: null,
high: null,
count: N*nf,
nDistinct: 1
)

2. Process each MCV v with frequency f :

new Bucket (
low: v,
high: v,
count: N*f,
nDistinct: 1
)

3. Process histogram: the histogram buckets can be directly
mapped to the bucket structure, by first excluding the MCVs
from the histogram. The target number of values and distinct
values for this step are obtained by subtracting the values
used for the generation of buckets for the NULL values and
MCVs from the initial N and nDistinct, and distributing
those numbers accordingly to each histogram bucket.

4.2 Handling Referential Integrity
As we briefly discussed in Section 1, the biggest challenge in

designing a highly scalable data generator is how to generate ref-
erential columns in an independent manner without requiring ac-
cess to what has been generated in the referred column. Reading
the referred tuples from disk may easily become the bottleneck of a
parallel data generator, and storing them in the memory may be pro-
hibitively expensive4. In this part we discuss how our bucket-based
data model can bypass this roadblock by bucket alignment. To the
best of our knowledge, the only data generator in the literature,
which supports generation of dependent data without scanning the
referred column’s data is [17], in which a multi-layer seeding strat-
egy is used to compute reference. Generally speaking, the strategy
we use in RSGen can also be seen as ‘computed reference’, yet it
does not induce high computation cost for generating the keys as in
[17].
4This does not include the simple case where the referred column
is a continuous unique key.

Figure 2 illustrates the process of bucket alignment, showing col-
umn A and B each has three histogram buckets initially (solid lines
in the plot). Supposing column A refers to column B, the follow-
ing procedures show how to make sure values generated in column
A must exist in column B: (1) the histogram bucket boundaries
are aligned, creating a new Bucket each time a boundary from ei-
ther column is encountered. In the example shown in Figure 2,
five Buckets are created for column A, and seven for column
B after the alignment. When splitting a bucket, the count and
nDistinct are allocated under a uniform assumption, since the
distribution within a histogram bucket is unknown. We also require
that buckets in the same ‘position’ (e.g. bA1 , bB1 in the figure) have
the same nDistinct. (2) after the buckets are aligned, the values
will be generated from each bucket in a deterministic manner. We
first uniformly divide a bucket into nDistinct intervals, then a
fixed point (e.g. the middle point) from the (c % nDistinct)-th
interval will be generated when the bucket has a current count of
c. Since buckets in the same position have the same nDistinct
value, in this way the possible values generated in both columns
will be the same. We acknowledge that ideally the values gener-
ated from a bucket would be uniformly distributed. By breaking a
bucket into intervals and selecting a fixed point for each, we have
sacrificed the uniform assumption locally in order to obtain inde-
pendence and scalability in data generation. This restriction can be
overcome by splitting each bucket into sub-buckets to obtain the
desired resolution.

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of RSGen through

extensive experimental study. We first investigate the run time per-
formance, followed by RSGen’s ability to recover database statis-
tics. We also test the truthfulness of the generated database by mea-
suring the relative error in range count queries. Finally we discuss
the performance of complex queries on database generated by RS-
Gen.

5.1 Setup
All experiments are conducted on a server with a 1.8GHz Quad

CPU and 8G of memory. The single node edition of Greenplum
Database 4.2.2 is used and configured with 1 master and 2 segment
nodes. We use TPC-H benchmark [8] with various scale factors
as our test databases. We do not report on experiments with a real
customer database here, as the legal and privacy implication pre-
vent us from publishing such results. Instead, we use TPC-H gen-
erated by dbgen, the native data generator of TPC-H, as the original
database, which we then compare to the database generated by RS-
Gen. RSGen was implemented in Java for maximum portability
and all results are the average of five runs.

5.2 Performance and Scalability
First we examine the run time performance of RSGen. Fig-

ure 3 shows the time of generating the TPC-H benchmark datasets
with various scale factors using dbgen and RSGen. It can be ob-
served that the two generators have comparable runtime, with RS-
Gen being slightly faster for scale factor 0.1 and slightly slower
at larger scale factors than dbgen. This performance is reasonable
since RSGen is written in Java while dbgen is a specialized C im-
plementation. In terms of scalability, RSGen has exhibited the
ability to scale up linearly. Note that the above result is obtained
in a single node environment – the speed of RSGen is expected
to significantly improve in a cluster given its design for parallelism
discussed in Section 3.2.

(a) Recovery of nDistinct (b) Recovery of histogram (c) Recovery of MCVs

Figure 4: Recovery of database statistics

Figure 3: Runtime performance of RSGen

5.3 Recovery of Statistics
As pointed in Section 2.2, one of the design goal of our data gen-

erator is the ability to recover the data characteristics of the original
database. In this part, we investigate the closeness of the statistics
between the original and generated databases. This is done by di-
rectly comparing the stats collected by gpsd, Greenplum’s stats
dump utility, from both databases. First, we define the following
metrics for three important types of column statistics in Greenplum
Database:

• nDistinct Error is defined as the average relative error of
nDistinct across all columns of the generated database as
compared to the original database.

• Histogram Error is defined as the average relative displace-
ment of histogram boundaries, i.e., 1

n

∑n
i=1 |t

′
i − ti|/(ti −

ti−1), where ti and t′i are the ith histogram boundary of the
original and generated databases respectively.

• MCV Error. To measure the error of recovering MCVs, we
must take both the most common values and their frequen-
cies into account. The scenario where multiple MCVs have
the same frequency but some of them are not included in the
statistics should also be considered. Formally,∑

s∈{MCV ∩MCV ′}|fs − fs′ |
+
∑

s∈{MCV \MCV ′},fs>min(MCF)fs
+
∑

s∈{MCV ′\MCV },fs>min(MCF ′)fs

where fs and fs′ are the frequencies of common values s in
the original database and s′ in the generated database respec-
tively.

Figure 4 shows the accuracy of the statistics in the generated databases
with various scale factors averaged over all columns where cor-
responding stats are available. Since the collection of database

Figure 5: Accuracy of COUNT queries

stats is based on sampling, they vary each time the columns are
ANALYZEd. We therefore establish a baseline of achievable mini-
mum error by running ANALYZE on the original database multiple
times and measuring the average error. As can be seen in Figure 4,
the recovered nDistinct is able to achieve a relative error of less
than 3% and the recovered MCVs are comparable to the baseline.
The recovered histogram has less than 10% of relative error except
the case of 1G, where a spike is observed due to a large error in one
column. Overall we are able to obtain similar stats from the RS-
Gen generated database and accuracy of recovery is able to hold
when the size of the database scales up.

5.4 Range Queries
The accuracy of range COUNT queries is a pragmatic metric

of the truthfulness of the generated database. Such queries can es-
sentially describe the data distribution of each column. In this set
of experiment, we issue range queries of different selectivity (from
1% to 50%) on both databases (0.1GB) and measure the relative er-
ror. We generate 20 queries for each column and find that the aver-
age errors are less than 5% and decreasing as selectivity increases,
as shown in Figure 5.

5.5 Complex SQL Queries
As mentioned in Section 1, one of the motivations for RSGen

is tuning query optimizers by measuring how sensitive they are to
variations in the input data, which cannot be correctly captured by
the statistics capabilities of the source system. In this part we per-
form experiments with queries from the TPC-H query set, which
go beyond the simple independent range queries. Again, we com-
pared the cardinalities of the query results over the original and the
generated database. For lack of space we do not include detailed
plots of the results. Our observations can be summarized in the
following:

• Several TPC-H queries showed discrepancies in the result

cardinality.

• Some of these can be explained with known limitations of the
PostgreSQL statistical model, including handling text data
and column correlations.

• While the actual output cardinalities were different, the query
optimizer chose identical plans for the original and the gener-
ated database, since both databases agreed on metadata and
statistics. These results are valuable, as they model realis-
tic use cases, where two datasets map to the same stats, but
may exhibit different query performance. The results can be
used to guide improvements in the statistical model and cost
computation in the query optimizer.

6. RELATED WORK
There have been two main lines of work in the literature of test

database generation. The first one (see [5, 10, 13, 14, 17]) focuses
on scalable and parallel generation of large synthetic databases,
subject to user-provided closed-form column distribution. An early
work by Gray et al. [10] discussed congruential generators to ob-
tain dense unique uniform distribution and its extension to other
common types of distributions, in which opportunities for scale-up
is explored. Many recent works use descriptive languages [5, 13,
17] or a graph model [14] for the definitions of data dependencies
and column distributions. In particular, a hierarchical seeding ap-
proach is proposed in [17] such that the data generating procedure
can be stateless across multiple hosts. Most of these data generators
require excessive efforts from the user to learn the descriptive lan-
guage and accurately specify data dependencies and distributions.

A major issue of using closed-form synthetic data distribution is
that the generated database tends to give empty result over complex
queries. The reason is that the subtle correlations between attributes
are often not captured. Another line of work [2, 3, 4, 15, 9, 18] ad-
dresses this problem by considering a richer set of constraints, e.g.,
generating a database given a workload of queries such that each in-
termediate result has a certain size. They constraints are typically
specified in a declarative language and the use of constraint solvers
is very common in these works. For example, Arasu et al. [2] iden-
tify the declarative property of cardinality constraints and its ability
to specify data characteristics. Given a large number of cardinal-
ity constraints as input, the paper proposed algorithms based on LP
solver and graphical models to instantiate tables that satisfy those
constraints.

7. CONCLUDING REMARKS
In this paper we presented RSGen, a data generator that can re-

verse database metadata, especially the statistics, to generate a syn-
thetic database with similar data characteristics. We have explored
the design space and requirements and proposed a bucket-based
data model which is able to break the dependencies of referential
integrity and provide high scalability. RSGen provides a practical
and extensible tool for scalable test database generation that is easy
to use by developers and QA engineers. We plan to extend RSGen
in the future with additional configuration options to support gen-
eration of databases with different properties not captured by the
statistical model of the source system, and combine RSGen with
data anonymization tools.

Acknowledgments. The authors would like to thank Sivaramakr-
ishnan Narayanan, Florian Waas, and the members of the Query
Processing team at Greenplum for their valuable feedback during
the project.

8. REFERENCES
[1] L. Antova, K. Krikellas, and F. M. Waas. Automatic capture

of minimal, portable, and executable bug repros using
ampere. In DBTest, page 2, 2012.

[2] A. Arasu, R. Kaushik, and J. Li. Data generation using
declarative constraints. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data,
pages 685–696, 2011.

[3] C. Binnig, D. Kossmann, and E. Lo. Reverse query
processing. In ICDE, pages 506–515, 2007.

[4] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. Qagen:
generating query-aware test databases. In Proceedings of the
2007 ACM SIGMOD international conference on
Management of data, pages 341–352. ACM, 2007.

[5] N. Bruno and S. Chaudhuri. Flexible database generators. In
Proceedings of the 31st international conference on Very
large data bases, VLDB ’05, pages 1097–1107. VLDB
Endowment, 2005.

[6] M. Castellanos, B. Zhang, I. Jimenez, P. Ruiz, M. Durazo,
U. Dayal, and L. Jow. Data desensitization of customer data
for use in optimizer performance experiments. In ICDE,
pages 1081–1092, 2010.

[7] T. P. P. Council. TPC-DS Benchmark. In
http://www.tpc.org/tpcds/, 2001 - 2013.

[8] T. P. P. Council. TPC-H Benchmark. In
http://www.tpc.org/tpch/, 2001 - 2013.

[9] C. de la Riva, M. J. Suárez-Cabal, and J. Tuya.
Constraint-based test database generation for SQL queries.
In Proceedings of the 5th Workshop on Automation of
Software Test, AST ’10, pages 67–74, New York, NY, USA,
2010. ACM.

[10] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. In Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, pages
243–252, 1994.

[11] T. P. G. D. Group. PostgresSQL Manual. In
http://www.postgresql.org/, 1996 - 2013.

[12] V. Gupta, G. Miklau, and N. Polyzotis. Private database
synthesis for outsourced system evaluation. In Proceedings
of the 5th Alberto Mendelzon International Workshop on
Foundations of Data Management, 2011.

[13] J. E. Hoag and C. W. Thompson. A parallel general-purpose
synthetic data generator. SIGMOD Rec., 36(1):19–24, Mar.
2007.

[14] K. Houkjær, K. Torp, and R. Wind. Simple and realistic data
generation. In VLDB, pages 1243–1246, 2006.

[15] E. Lo, N. Cheng, and W.-K. Hon. Generating databases for
query workloads. Proc. VLDB Endow., 3(1-2):848–859,
Sept. 2010.

[16] P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak. The star
schema benchmark and augmented fact table indexing. In
R. O. Nambiar and M. Poess, editors, TPCTC, volume 5895
of Lecture Notes in Computer Science, pages 237–252.
Springer, 2009.

[17] T. Rabl, M. Frank, H. Sergieh, and H. Kosch. A data
generator for cloud-scale benchmarking. Performance
Evaluation, Measurement and Characterization of Complex
Systems, pages 41–56, 2011.

[18] E. Torlak. Scalable test data generation from
multidimensional models. In SIGSOFT FSE, page 36, 2012.

