
Issues in Big Data Testing and Benchmarking
Alexander Alexandrov

Technische Universität Berlin
Einsteinufer 17

10587 Berlin, Germany
+49 30 314 23555

alexander.alexandrov@tu-
berlin.de

Christoph Brücke
Technische Universität Berlin

Einsteinufer 17
10587 Berlin, Germany

+49 30 314 23555
christoph.bruecke@campus.tu-

berlin.de

Volker Markl
Technische Universität Berlin

Einsteinufer 17
10587 Berlin, Germany

+49 30 314 23555
volker.markl@tu-berlin.de

ABSTRACT
The academic community and industry are currently researching
and building next generation data management systems. These
systems are designed to analyze data sets of high volume with
high data ingest rates and short response times executing complex
data analysis algorithms on data that does not adhere to relational
data models. As these big data systems differ from standard
relational database systems with respect to data and workloads,
the traditional benchmarks used by the database community are
insufficient. In this paper, we describe initial solutions and
challenges with respect to big data generation, methods for
creating realistic, privacy-aware, and arbitrarily scalable data sets,
workloads, and benchmarks from real world data. We will in
particular discuss why we feel that workloads currently discussed
in the testing and benchmarking community do not capture the
real complexity of big data and highlight several research
challenges with respect to massively-parallel data generation and
data characterization.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: testing tools, data generators

General Terms
Measurement, Performance, Experimentation

Keywords
Big Data, Data Generation, Data Profiling, Workloads,
Benchmarking

1. INTRODUCTION
The database systems building community is currently at a peak
of new activity, creating novel systems for managing and
analyzing what is commonly called “big data.” Big data is usually
characterized by the requirement to conduct advanced analytics on
large volumes of data of variable format, which is ingested into
the system with high-velocity with the need for fast response
times. Novel big data analytics systems differ from traditional
data analysis systems for varying reasons, they: (a) can process
terabytes or even petabytes of data due to their scale-out abilities,
employing massively parallel processing, (b) support complex
data types in addition to relational sets of tuples (i.e., data of
complex structure, such as text documents, hierarchies, graphs, or

even images, audio, or video files), (c) allow for defining and
processing complex analytics tasks that go beyond the traditional
operations of the relational algebra (e.g., user-defined functions,
data mining or machine learning algorithms, graph algorithms),
(d) provide fault-tolerance in order to ensure termination even for
long-running computations, and (e) compute answers with low-
latency, producing results in a pipelined fashion.

Some examples of systems that showcase several of these features
are Google MapReduce [DG04], its open source implementation
Hadoop [Had13], its ecosystem of languages (e.g., Hive
[TSJ+09], JAQL [BEG+11], Pig [ORS+08]) and libraries such as
Mahout [Mah13], and other big data systems such as Asterix
[ABG+12], GraphLab [LBG+12], Spark [Spa13] and our own
Stratosphere system [ABE+10, Str13]. At the same time, there is a
trend to make more traditional relational data analysis systems
more scalable. Examples of these efforts are SAP Hana
[FML+12], Impala [Imp13], Oracle Exadata [GSA+11], or the
columnar storage extensions to Microsoft’s and IBM’s database
products, to name a few.

While all these systems have advanced the capabilities of data
analysis with respect to the five dimensions above, database
testing and benchmarking have not moved forward to provide data
generators, data sets, and workloads. In particular, we see the need
to generate large, realistic data sets at scale, as well as the need for
well-defined workloads that capture the nature of novel, modern
analysis tasks.

2. BIG DATA GENERATION
Data generation tools and practices can be principally assigned to
one of two classes: (a) reusing existing, well-known data
generation tools, or (b) implementing custom, use-case tailored
data generators. We first review the benefits of each one of these
classes and then discuss some implications for the evaluation of
big data analytics systems.

Since the establishment of standardized benchmarks as a “gold
standard” for performance evaluation of database systems in the
early 90’s, experimental results reported in research papers often
reuse data sets and queries from well-known benchmarks, like
TPC-H, TPC-C [TPC13], and XMLGen [XML13]. This practice
is justified by two main factors. First, the synthetic data used by
standardized or public benchmarks typically adheres to a short
textual specification that is well-known in the database
community. Reusing data sets from such benchmarks therefore
makes the data properties and their impact on the evaluated tasks
more comprehensible and increases the trust in the reported
experiment results. Second, well-known benchmarks typically
provide open-source tools for data and workload generation,
which can be adapted and used by third parties relatively easy.
This reduces the overall effort required to prepare and execute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DBTEST’13, June 24, 2013, New York City, NY, USA
Copyright 2013 ACM 1-58113-000-0/00/0010 …$15.00.

“proof-of-concept” experiments and allows researchers to spend
more time working on the actual prototypes rather than the tooling
to evaluate them.

An alternative approach that sometimes is preferred for
specialized experimental studies is to define and implement a
custom data generator tailored towards the requirements of the
concrete experiments at hand. If the experiments are recognized as
relevant by the database community, the data and tasks described
in the original research are often reused by other authors in
follow-up work. For example, Pavlo et al. followed this approach
in their comparison of approaches for large-scale data analytics
[PPR+09] and implemented a synthetic generator that generates a
collection of linked HTML documents and associated data (e.g.,
user traffic, PageRank). The data generator and the tasks have
since then been used in several other papers dealing with large-
scale data analytics systems [DQJ+10, JOS+10]. For graph data,
the Kronecker multiplication approach suggested by Leskovec et
al. [LCK+05] offers a simple algorithm for synthetic generation of
unlabeled graphs with real world characteristics (e.g., shrinking
diameter, skewed degree distribution). Due to the lack of
publically available real-world graphs in the terabyte range,
Kronecker graphs are often featured in the evaluation sections of
several graph-mining papers over the past few years [KTF09,
KTA+11].

Principally, the main issue with both classes is the inherent
simplicity in the statistical structure of the generated data. In the
first case, this simplicity is driven by the need for concise and
understandable specification for standardized benchmarks. In the
second case, the main hindering factor is the complexity
introduced in the data generation programs by the need for
correlated data and the amount of resources that researchers are
willing to invest in their development.

Figure 1: Simplified Retail Database Schema

In reference to the characteristics of new big data analysis systems
presented in Section 1, the use of oversimplified synthetic data
creates a subtle pitfall that may impact the relevance of research
results for real-world applications. The reason for this is that per
definition such systems must work in a distributed execution
environment (cluster or cloud), and also must use some form of
data-parallelism in order to ensure scale-out. These design
decisions are highly sensitive to data skew, which often is present
in many target application domains “a priori” and potentially
changes over time. To illustrate the problem, consider the retail
database schema depicted on Figure 1 and a use-case, where the
benchmarks or experimental setup models an application that
wants to compute the top-k most purchased items per product
category. Since some product categories are naturally more in

demand than others, introducing a skew over the product category
distribution in the joined LINEITEM-PRODUCT view is critical
to the relevance of the generated data. As most systems will
process each product category group in parallel, skew will
obviously influence system performance for this particular task.
Moreover, for an online computation of the same counts in a
streaming setting, the degree of skew will depend on the time of
the current window (e.g., in the U.S. shopping peaks between
Thanksgiving Day & Christmas and attains a maximum on “Black
Friday”). In this case, assuming an evenly distributed load across
time is an oversimplification that can influence the relevance of
the experimental results for real-world applications.

With the advent of big data comes the requirement to quickly
generate huge data sets. This is particularly a challenge when
generating data sets with key/foreign-key relationships or other
complex correlations across tables. Using specialized random
number generators with seed skipping allows for doing so in
parallel without having to communicate data generated on one
node of a shared-nothing cluster to another [RFS+10, FPR12,
ASP+11, ATM12], resulting in toolkits such as PDGF [PDG13]
or Myriad [Myr13]. Both toolkits provide a set of domain-specific
primitives for data generation that facilitate the transparent use of
seed-skip PRNGs and complementary techniques for scalable
generation of complex data.

3. GENERATING REALISTIC DATA SETS
The advances in new methods for scalable generation of realistic
data highlight an important practical question: “If the data
generator program can be expressed in terms of a small set of
special primitives, then to which extent and in which scenarios
can the specification process itself be executed automatically?” A
naïve general approach is based on the analysis of empirical
observations in the modeled domain and the subsequent synthesis
of a data generator specification from these observations. In
business scenarios, however, the analysis is often done in the
context of a reference dataset that represents a ground truth for the
derived data generator. This section sketches our vision for an
integrated framework for such usage scenarios. We propose an
extensible architecture with clean separation between the data
generation primitives and the methods and techniques used to
extract relevant features from the ground truth data set.
A large problem for benchmarking and testing of big data systems
is the lack of realistic data sets. Many synthetic data sets follow
simplistic assumptions (e.g., few correlations, mostly uniform
distributions, oversimplified schema) that are not representative
for real-world data. A promising, generalizable, and more
effective way is to automatically extract the domain information
from a ground truth data set, which is often available in practice.
Figure 2 illustrates our envisioned pipeline. The domain
information is first extracted from the reference database in the
form of domain constraints, which can be either hard (e.g., foreign
keys, unique keys, and other functional dependencies) or soft
(e.g., local statistical models). The obtained structural, semantic,
and statistical information is then unified into an intermediate
model representing the schema information with annotated
constraints. A final synthesis pass transforms the intermediate
representation into a data generator specification for a specific
target environment like the Myriad. This specification is then used
to create a concrete data generator instance that is able to mimic
the original data set.

Figure 2: A Pipeline for the Analysis & Synthesis of Data Generators

We note that in the first step of this process, the circumstances in
which the analysis is performed will influence its depth and
consequently the quality of the collected domain information.
If the reference database cannot be accessed directly and the
domain information is available only in a derived form, such as in
a database catalog, the analysis must be performed indirectly and
can only extract the available catalog information. This
information commonly consists of attribute value statistics (e.g.,
frequency values, histograms, number of distinct values, and
number of NULLs), schema information, and integrity constraints
(e.g., referential integrity, primary keys, and unique constraints as
well as other constraints representing domain invariants).
Alternatively, if the reference database is available directly,
advanced profiling methods could be leveraged to obtain
information beyond the catalog in order to capture a more
accurate domain model. This approach will require us to
determine additional characterizations of the dataset to be
generated (e.g., advanced multivariate statistics [SHM+06] and
soft constraints [IMH+04, BH03, SBH+06]) on the data with
scalable methods (see [HIL+09] for an overview of statistical
methods, and [Nau13] for an overview of data profiling). Using
these techniques will allow for determining the essential
characteristics of real-world data sets and correspondingly will
enable one to scale up or down synthetic clones.
The integration of data profiling and data generation workflows is
relevant in the era of big data for a number of reasons. First, many
institutions publish their data sets in order to let others perform
their experiments on them. However, database sizes are becoming
larger and larger. Consequently, it is becoming increasingly
difficult to transfer these huge data sets to the person wishing to
use them due to network and bandwidth constraints. Therefore, it
is desirable to have a compact specification of the data sets, i.e., a
synopsis or profile from which one can automatically generate a
data generator specification and thus the dataset. Second, data
profiling will increase the relevance tests or benchmarks. Huppler
[Hup09] describes five key aspects for a good benchmark, namely
a good benchmark has to be relevant, repeatable, fair, verifiable,
and economical. Section 2 mainly addressed the latter one, while
data profiling will help to improve the relevance.
Currently, we are developing a prototype called Oligos [Oli13]
that adheres to our aforementioned vision. The initial version of
Oligos can generate data generator specifications for the Myriad
Toolkit [Myr13] from the system catalog of a database system.

Our long-term vision is provide a modular API that will allow
learning advanced statistics and correlation information, in order
to generate even more realistic data sets.

4. AN APPLICATION: REGRESSION
TESTING OF BIG DATA SYSTEMS
An important part of the maintenance lifecycle of commercial big
data systems as well as general data management systems is
devoted to the diagnosis of performance regressions observed by
customers in a production setting. When trying to reproduce the
problematic behavior in a test environment, database system
developers often face the problem of missing data – even though
the database schema and the problematic queries can be provided
by the customer as part of the regression report, the actual
database instance typically cannot be obtained (e.g., due to
privacy restrictions). Typically, what is available is the database
catalog, which contains a statistical approximation of the
reference database in the form of value distributions, cardinalities,
and histograms on columns or column groups. As a fallback
solution, developers currently trick the optimizer of a test database
by feeding customer catalog data in order to obtain the query
access paths of the actual production system. As the underlying
data is missing and the database catalog is usually lacking crucial
information (e.g., on multivariate distributions) synthetic data sets
generated in the lab are not representative. Thus, information on
how the query access paths perform requires further assistance
and feedback from the client. The lack of a complete and
representative regression database therefore slows down the
maintenance process and causes additional costs. The methods for
data generation based on data and workload characterization as
envisioned in Oligos and Myriad would offer a remedy to this
problem.

5. OPEN ISSUES AND CONCLUSIONS
We have given an overview of issues in big data benchmarking
and testing, with a strong focus on data generation. We believe
that efficiently generating a huge, realistic data set is an important
prerequisite for the advancement, evaluation, and fair comparison
of big data systems. Myriad [Myr13], PDGF [DPG13], and Oligos
[Oli13] are a first step in this direction. However, in the context of
big data generation and benchmarking, a large number of
challenges remain open.
However, in the context of big data generation and benchmarking,
a large number of challenges remain open. For realistic data
generation from a given reference dataset the challenges exist
both in the analysis and the synthesis phase.
During the analysis phase, a combination of data characterization
and profiling methods can be identified and applied in order to
increase the quality of the domain information that can be inferred
directly from the reference database. Such methods will allow to
efficiently determine multi-key dependencies, in particular
referential integrity, as well as to profile data with complex
structure (e.g., text, graphs, NF² and hierarchical data). In order to
preserve privacy when conducting data profiling, data obfuscation
methods may as well be required. [Nau13] lists further challenges
in the area of data profiling.
Inferred schema information and constraints must be then unified
into an intermediate representation (IR) in the synthesis phase.
Two problems exist in this context. First, in order to facilitate the
subsequent translation of the IR into a data generator
specification, the IR should lend itself to the features and
primitives common to the underlying data-generation engines.
Second, the unification process should determine and handle

inconsistencies in the domain information collected in the analysis
phase. Recently, Arasu [AKL11] and Torlak [Tor12] suggested
two different constraint-based languages for data generator
specification that can serve as a starting point for the development
of a suitable IR and synthesis algorithm. For both languages, the
authors give sufficiency conditions for the existence of a data set
fulfilling the input constraints and provide approximate
algorithms to find such an instance. The approach presented in
[Tor12] uses a mix of hard (dimension or integrity) and soft
(statistical) constraints and is restricted to dimension models,
whereas [AKL11] works on general relational models and relies
solely on soft (cardinality) constraints (hard constraints are
represented implicitly as a special form of soft constraints). As the
target language in our setting is likely to include primitives that
directly enforce certain types of hard constraints (e.g. unique keys,
foreign keys), we believe that a distinction between soft and hard
constraints in the IR is a more promising approach.
Another big open area is the provisioning of workloads.
Traditional benchmarks focus on simple workloads that
essentially follow the relational algebra or an NF² algebra/
XQuery. For evaluating and testing big data analytics systems, we
will require more complex workloads that involve machine
learning algorithms, information extraction, and graph
analysis/mining. The lack of a standardized data analysis language
currently is a big obstacle for arriving at realistic, comparable, and
universally useful workload specifications. Ideally, until a
standardized declarative language is available use-case
repositories may be a first step in this direction.

6. ACKNOWLEDGMENTS
We thank Berni Schiefer from IBM and Tillmann Rabl from the
University of Toronto for interesting discussions. Our
investigations were funded by a CAS grant from IBM, the ICT
Labs of the European Institute of Technology as well as the DFG
(German National Science Foundation) via the Stratosphere
Collaborative Research Unit.

7. REFERENCES
[ABE+10] A. Alexandrov, D. Battré, S. Ewen, M. Heimel, F.

Hueske, O. Kao, V. Markl, E. Nijkamp, D. Warneke:
Massively Parallel Data Analysis with PACTs on
Nephele. PVLDB Vol. 3, No. 2, pp. 1625–1628
(2010)

[ABG+12] S. Alsubaiee, A. Behm, R. Grover, R. Vernica, V.
Borkar, M. J. Carey, C. Li: ASTERIX: Scalable
Warehouse-Style Web Data Integration. In
Proceedings of the Ninth International Workshop on
Information Integration on the Web, Article 2, ACM,
(2012)

[AKL11] A. Arasu, R. Kaushik, J. Li: Data Generation using
Declarative Constraints. Proceeding of the SIGMOD
Conference, pp. 685-696 (2011)

 [ASP+11] A. Alexandrov, B. Schiefer, J. Poelman, S. Ewen, T.
Bodner, V. Markl: Myriad - Parallel Data Generation
on Shared-Nothing Architectures, In Proc. ASBD, pp.
30-33 (2011)

[ATM12] A. Alexandrov, K. Tzoumas, V. Markl: Myriad:
Scalable and Expressive Data Generation, In Proc.
VLDB(5) pp. 1890-1893 (2012)

[BH03] P. Brown, P. Haas: BHUNT: Automatic Discovery of
Fuzzy Algebraic Constraints in Relational Data.
VLDB 2003: 668-679

[BEG+11] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Eltabakh, C.-C. Kanne, E. J. Shekita: Jaql: A
scripting language for large scale semistructured data
analysis. In Proc. of VLDB Conference. (2011)

[DG04] J. Dean, S. Ghemawat: MapReduce: simplified data
processing on large clusters, In OSDI, pp. 137-150
(2004)

[FML+12] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H.
Rauhe, J. Dees: The SAP HANA Database -- An
Architecture Overview. IEEE Data Eng. Bull. 35(1):
28-33 (2012)

[FPR12] M. Frank, M. Poess, T. Rabl: Efficient update data
generation for DBMS benchmarks. ICPE 2012: 169-
180

[GSA+11] R. Greenwald, R. Stackowiak, M. Alam, M. Bhuller..
Achieving extreme performance with Oracle Exadata.
McGraw-Hill Osborne Media (2011)

[Had13] http://hadoop.apache.org/, last accessed 05-10-2013
[HIL+09] P. J. Haas, I. Ilyas, G. Lohman, V. Markl: Discovering

and Exploiting Statistical Properties for Query
Optimization in Relational Databases: A Survey.
Statistical Analysis and Data Mining 1(4): 223-250
(2009)

[Hup93] K. Huppler: The Art of Building a Good Benchmark.
TPCTC 2009: 18-30 (2009)

[IMH+04] I. Ilyas, V. Markl, P. Haas, P. Brown, A. Aboulnaga:
CORDS: Automatic Discovery of Correlations and
Soft Functional Dependencies. SIGMOD Conference
2004: 647-658

[Imp13] https://github.com/cloudera/impala, last accessed 05-
10-2013

[LBG+12] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A.
Kyrola, J. M. Hellerstein: DistributedGraphLab: A
framework for machine learning and data mining in
the cloud. Proceedings of the VLDB Endowment,
5(8), pp. 716-727 (2012)

[Mah13] Mahout: http://mahout.apache.org/, last accessed 04-
21-2013

[Myr13] https://github.com/TU-Berlin-DIMA/myriad-
toolkit/wiki, last accessed 05-10-2013

[Nau13] http://www.hpi.uni-
potsdam.de/naumann/publications/publications_by_ty
pe/year/2013/2276/Nau13.html, SIGMOD Record
(2013)

[Oli13] https://github.com/TU-Berlin-DIMA/myriad-
toolkit/wiki/Using-Oligos-Guide, last accessed 05-10-
2013

[ORS+08] C. Olston, B. Reed, U. Srivastava, R. Kumar, A.
Tomkins: Pig Latin: A Not-So-Foreign Language for
Data Processing. Proceedings of the SIGMOD
Conference (SIGMOD), pp. 1099-1110, (2008)

[PDG13] http://www.paralleldatageneration.org/drupal6/, last
accessed 05-10-2013

[RFS+10] T. Rabl, M. Frank, H. Sergieh, H. Kosch: A Data
Generator for Cloud-Scale Benchmarking. TPCTC
2010: 41-56

http://hadoop.apache.org/�
https://github.com/cloudera/impala�
http://mahout.apache.org/�
https://github.com/TU-Berlin-DIMA/myriad-toolkit/wiki�
https://github.com/TU-Berlin-DIMA/myriad-toolkit/wiki�
http://www.hpi.uni-potsdam.de/naumann/publications/publications_by_type/year/2013/2276/Nau13.html�
http://www.hpi.uni-potsdam.de/naumann/publications/publications_by_type/year/2013/2276/Nau13.html�
http://www.hpi.uni-potsdam.de/naumann/publications/publications_by_type/year/2013/2276/Nau13.html�
https://github.com/TU-Berlin-DIMA/myriad-toolkit/wiki/Using-Oligos-Guide�
https://github.com/TU-Berlin-DIMA/myriad-toolkit/wiki/Using-Oligos-Guide�
http://www.paralleldatageneration.org/drupal6/�

[SBH+06] Y. Sismanis, P. Brown, P. Haas, B. Reinwald:
GORDIAN: Efficient and Scalable Discovery of
Composite Keys. VLDB 2006: 691-702

[SHM+06] U. Srivastava, P. Haas, V. Markl, M. Kutsch, T.Tran:
ISOMER: Consistent Histogram Construction Using
Query Feedback. ICDE (2006)

[Spa13] http://spark-project.org/, last accessed 05-10-2013
[Str13] http://www.stratosphere.eu/, last accessed 05-10-2013
[Tor12] E. Torlak: Scalable test data generation from

multidimensional models. Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering (2012)

[TPC13] http://www.tpc.org, last accessed 05-10-2013
[TSJ+09] A. Thusoo, J. S.Sarma, N. Jain, Z. Shao, P.Chakka, S.

Anthony, H. Liu, P. Wyckoff, R. Murthy: Hive - A
Warehousing Solution Over a Map-Reduce
Framework. PVLDB 2(2), pp. 1626-1629 (2009)

[XML13] http://www.xml-benchmark.org/, last accessed 05-10-
2013

[PPR+09] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt,
S. Madden, M. Stonebraker: A comparison of
approaches to large-scale data analysis. SIGMOD
Conference 2009: 165-178

[DQJ+10] J. Dittrich, J. Quiané-Ruiz, A. Jindal, Y. Kargin, V.
Setty, J. Schad: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even
Noticing). PVLDB 3(1): 518-529 (2010)

[JOS+10] D. Jiang, B. C. Ooi, L. Shi, S. Wu: The Performance
of MapReduce: An In-depth Study. PVLDB 3(1):472-
483 (2010)

[LCK+05] J. Leskovec, D. Chakrabarti, J. Kleinberg, C.
Faloutsos: Realistic, Mathematically Tractable Graph
Generation and Evolution, Using Kronecker
Multiplication. PKDD 2005: 133-145

[KTF09] U. Kang, C.E. Tsourakakis, C. Faloutsos: PEGASUS:
A Peta-Scale Graph Mining System. ICDM 2009:
229-238

[KTA+11] U. Kang, C.E. Tsourakakis, A.P. Appel, C. Faloutsos,
J. Leskovec: HADI: Mining Radii of Large Graphs.
TKDD 5(2): 8 (2011)

http://spark-project.org/�
http://www.stratosphere.eu/�
http://www.tpc.org/�
http://www.xml-benchmark.org/�

	1. INTRODUCTION
	2. BIG DATA GENERATION
	3. GENERATING REALISTIC DATA SETS
	4. AN APPLICATION: REGRESSION TESTING OF BIG DATA SYSTEMS
	5. OPEN ISSUES AND CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

