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ABSTRACT  
The academic community and industry are currently researching 
and building next generation data management systems. These 
systems are designed to analyze data sets of high volume with 
high data ingest rates and short response times executing complex 
data analysis algorithms on data that does not adhere to relational 
data models. As these big data systems differ from standard 
relational database systems with respect to data and workloads, 
the traditional benchmarks used by the database community are 
insufficient. In this paper, we describe initial solutions and 
challenges with respect to big data generation, methods for 
creating realistic, privacy-aware, and arbitrarily scalable data sets, 
workloads, and benchmarks from real world data. We will in 
particular discuss why we feel that workloads currently discussed 
in the testing and benchmarking community do not capture the 
real complexity of big data and highlight several research 
challenges with respect to massively-parallel data generation and 
data characterization. 

Categories and Subject Descriptors  
D.2.5 [Testing and Debugging]: testing tools, data generators 

General Terms 
Measurement, Performance, Experimentation  

Keywords 
Big Data, Data Generation, Data Profiling, Workloads, 
Benchmarking 

1. INTRODUCTION 
The database systems building community is currently at a peak 
of new activity, creating novel systems for managing and 
analyzing what is commonly called “big data.” Big data is usually 
characterized by the requirement to conduct advanced analytics on 
large volumes of data of variable format, which is ingested into 
the system with high-velocity with the need for fast response 
times. Novel big data analytics systems differ from traditional 
data analysis systems for varying reasons, they: (a) can process 
terabytes or even petabytes of data due to their scale-out abilities, 
employing massively parallel processing, (b) support complex 
data types in addition to relational sets of tuples (i.e., data of 
complex structure, such as text documents, hierarchies, graphs, or 

even images, audio, or video files), (c) allow for defining and 
processing complex analytics tasks that go beyond the traditional 
operations of the relational algebra (e.g., user-defined functions, 
data mining or machine learning algorithms, graph algorithms), 
(d) provide fault-tolerance in order to ensure termination even for 
long-running computations, and (e) compute answers with low-
latency, producing results in a pipelined fashion. 

Some examples of systems that showcase several of these features 
are Google MapReduce [DG04], its open source implementation 
Hadoop [Had13], its ecosystem of languages (e.g., Hive 
[TSJ+09], JAQL [BEG+11], Pig [ORS+08]) and libraries such as 
Mahout [Mah13], and other big data systems such as Asterix 
[ABG+12], GraphLab [LBG+12], Spark [Spa13] and our own 
Stratosphere system [ABE+10, Str13]. At the same time, there is a 
trend to make more traditional relational data analysis systems 
more scalable. Examples of these efforts are SAP Hana 
[FML+12], Impala [Imp13], Oracle Exadata [GSA+11], or the 
columnar storage extensions to Microsoft’s and IBM’s database 
products, to name a few. 

While all these systems have advanced the capabilities of data 
analysis with respect to the five dimensions above, database 
testing and benchmarking have not moved forward to provide data 
generators, data sets, and workloads. In particular, we see the need 
to generate large, realistic data sets at scale, as well as the need for 
well-defined workloads that capture the nature of novel, modern 
analysis tasks.  

2. BIG DATA GENERATION 
Data generation tools and practices can be principally assigned to 
one of two classes: (a) reusing existing, well-known data 
generation tools, or (b) implementing custom, use-case tailored 
data generators. We first review the benefits of each one of these 
classes and then discuss some implications for the evaluation of 
big data analytics systems. 

Since the establishment of standardized benchmarks as a “gold 
standard” for performance evaluation of database systems in the 
early 90’s, experimental results reported in research papers often 
reuse data sets and queries from well-known benchmarks, like 
TPC-H, TPC-C [TPC13], and XMLGen [XML13]. This practice 
is justified by two main factors. First, the synthetic data used by 
standardized or public benchmarks typically adheres to a short 
textual specification that is well-known in the database 
community. Reusing data sets from such benchmarks therefore 
makes the data properties and their impact on the evaluated tasks 
more comprehensible and increases the trust in the reported 
experiment results. Second, well-known benchmarks typically 
provide open-source tools for data and workload generation, 
which can be adapted and used by third parties relatively easy. 
This reduces the overall effort required to prepare and execute 
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“proof-of-concept” experiments and allows researchers to spend 
more time working on the actual prototypes rather than the tooling 
to evaluate them. 

An alternative approach that sometimes is preferred for 
specialized experimental studies is to define and implement a 
custom data generator tailored towards the requirements of the 
concrete experiments at hand. If the experiments are recognized as 
relevant by the database community, the data and tasks described 
in the original research are often reused by other authors in 
follow-up work. For example, Pavlo et al. followed this approach 
in their comparison of approaches for large-scale data analytics 
[PPR+09] and implemented a synthetic generator that generates a 
collection of linked HTML documents and associated data (e.g., 
user traffic, PageRank). The data generator and the tasks have 
since then been used in several other papers dealing with large-
scale data analytics systems [DQJ+10, JOS+10]. For graph data, 
the Kronecker multiplication approach suggested by Leskovec et 
al. [LCK+05] offers a simple algorithm for synthetic generation of 
unlabeled graphs with real world characteristics (e.g., shrinking 
diameter, skewed degree distribution). Due to the lack of 
publically available real-world graphs in the terabyte range, 
Kronecker graphs are often featured in the evaluation sections of 
several graph-mining papers over the past few years [KTF09, 
KTA+11]. 

Principally, the main issue with both classes is the inherent 
simplicity in the statistical structure of the generated data. In the 
first case, this simplicity is driven by the need for concise and 
understandable specification for standardized benchmarks. In the 
second case, the main hindering factor is the complexity 
introduced in the data generation programs by the need for 
correlated data and the amount of resources that researchers are 
willing to invest in their development. 

  
Figure 1: Simplified Retail Database Schema 

In reference to the characteristics of new big data analysis systems 
presented in Section 1, the use of oversimplified synthetic data 
creates a subtle pitfall that may impact the relevance of research 
results for real-world applications. The reason for this is that per 
definition such systems must work in a distributed execution 
environment (cluster or cloud), and also must use some form of 
data-parallelism in order to ensure scale-out. These design 
decisions are highly sensitive to data skew, which often is present 
in many target application domains “a priori” and potentially 
changes over time. To illustrate the problem, consider the retail 
database schema depicted on Figure 1 and a use-case, where the 
benchmarks or experimental setup models an application that 
wants to compute the top-k most purchased items per product 
category. Since some product categories are naturally more in 

demand than others, introducing a skew over the product category 
distribution in the joined LINEITEM-PRODUCT view is critical 
to the relevance of the generated data. As most systems will 
process each product category group in parallel, skew will 
obviously influence system performance for this particular task. 
Moreover, for an online computation of the same counts in a 
streaming setting, the degree of skew will depend on the time of 
the current window (e.g., in the U.S. shopping peaks between 
Thanksgiving Day & Christmas and attains a maximum on “Black 
Friday”). In this case, assuming an evenly distributed load across 
time is an oversimplification that can influence the relevance of 
the experimental results for real-world applications. 

With the advent of big data comes the requirement to quickly 
generate huge data sets. This is particularly a challenge when 
generating data sets with key/foreign-key relationships or other 
complex correlations across tables. Using specialized random 
number generators with seed skipping allows for doing so in 
parallel without having to communicate data generated on one 
node of a shared-nothing cluster to another [RFS+10, FPR12, 
ASP+11, ATM12], resulting in toolkits such as PDGF [PDG13] 
or Myriad [Myr13]. Both toolkits provide a set of domain-specific 
primitives for data generation that facilitate the transparent use of 
seed-skip PRNGs and complementary techniques for scalable 
generation of complex data. 

3. GENERATING REALISTIC DATA SETS 
The advances in new methods for scalable generation of realistic 
data highlight an important practical question: “If the data 
generator program can be expressed in terms of a small set of 
special primitives, then to which extent and in which scenarios 
can the specification process itself be executed automatically?” A 
naïve general approach is based on the analysis of empirical 
observations in the modeled domain and the subsequent synthesis 
of a data generator specification from these observations. In 
business scenarios, however, the analysis is often done in the 
context of a reference dataset that represents a ground truth for the 
derived data generator. This section sketches our vision for an 
integrated framework for such usage scenarios. We propose an 
extensible architecture with clean separation between the data 
generation primitives and the methods and techniques used to 
extract relevant features from the ground truth data set. 
A large problem for benchmarking and testing of big data systems 
is the lack of realistic data sets. Many synthetic data sets follow 
simplistic assumptions (e.g., few correlations, mostly uniform 
distributions, oversimplified schema) that are not representative 
for real-world data. A promising, generalizable, and more 
effective way is to automatically extract the domain information 
from a ground truth data set, which is often available in practice. 
Figure 2 illustrates our envisioned pipeline. The domain 
information is first extracted from the reference database in the 
form of domain constraints, which can be either hard (e.g., foreign 
keys, unique keys, and other functional dependencies) or soft 
(e.g., local statistical models).  The obtained structural, semantic, 
and statistical information is then unified into an intermediate 
model representing the schema information with annotated 
constraints. A final synthesis pass transforms the intermediate 
representation into a data generator specification for a specific 
target environment like the Myriad. This specification is then used 
to create a concrete data generator instance that is able to mimic 
the original data set. 



  
Figure 2: A Pipeline for the Analysis & Synthesis of Data Generators 

We note that in the first step of this process, the circumstances in 
which the analysis is performed will influence its depth and 
consequently the quality of the collected domain information.  
If the reference database cannot be accessed directly and the 
domain information is available only in a derived form, such as in 
a database catalog, the analysis must be performed indirectly and 
can only extract the available catalog information. This 
information commonly consists of attribute value statistics (e.g., 
frequency values, histograms, number of distinct values, and 
number of NULLs), schema information, and integrity constraints 
(e.g., referential integrity, primary keys, and unique constraints as 
well as other constraints representing domain invariants).  
Alternatively, if the reference database is available directly, 
advanced profiling methods could be leveraged to obtain 
information beyond the catalog in order to capture a more 
accurate domain model. This approach will require us to 
determine additional characterizations of the dataset to be 
generated (e.g., advanced multivariate statistics [SHM+06] and 
soft constraints [IMH+04, BH03, SBH+06]) on the data with 
scalable methods (see [HIL+09] for an overview of statistical 
methods, and [Nau13] for an overview of data profiling). Using 
these techniques will allow for determining the essential 
characteristics of real-world data sets and correspondingly will 
enable one to scale up or down synthetic clones. 
The integration of data profiling and data generation workflows is 
relevant in the era of big data for a number of reasons. First, many 
institutions publish their data sets in order to let others perform 
their experiments on them. However, database sizes are becoming 
larger and larger. Consequently, it is becoming increasingly 
difficult to transfer these huge data sets to the person wishing to 
use them due to network and bandwidth constraints. Therefore, it 
is desirable to have a compact specification of the data sets, i.e., a 
synopsis or profile from which one can automatically generate a 
data generator specification and thus the dataset. Second, data 
profiling will increase the relevance tests or benchmarks. Huppler 
[Hup09] describes five key aspects for a good benchmark, namely 
a good benchmark has to be relevant, repeatable, fair, verifiable, 
and economical. Section 2 mainly addressed the latter one, while 
data profiling will help to improve the relevance. 
Currently, we are developing a prototype called Oligos [Oli13] 
that adheres to our aforementioned vision. The initial version of 
Oligos can generate data generator specifications for the Myriad 
Toolkit [Myr13] from the system catalog of a database system. 

Our long-term vision is provide a modular API that will allow 
learning advanced statistics and correlation information, in order 
to generate even more realistic data sets. 

4. AN APPLICATION: REGRESSION 
TESTING OF BIG DATA SYSTEMS  
An important part of the maintenance lifecycle of commercial big 
data systems as well as general data management systems is 
devoted to the diagnosis of performance regressions observed by 
customers in a production setting. When trying to reproduce the 
problematic behavior in a test environment, database system 
developers often face the problem of missing data – even though 
the database schema and the problematic queries can be provided 
by the customer as part of the regression report, the actual 
database instance typically cannot be obtained (e.g., due to 
privacy restrictions). Typically, what is available is the database 
catalog, which contains a statistical approximation of the 
reference database in the form of value distributions, cardinalities, 
and histograms on columns or column groups. As a fallback 
solution, developers currently trick the optimizer of a test database 
by feeding customer catalog data in order to obtain the query 
access paths of the actual production system. As the underlying 
data is missing and the database catalog is usually lacking crucial 
information (e.g., on multivariate distributions) synthetic data sets 
generated in the lab are not representative. Thus, information on 
how the query access paths perform requires further assistance 
and feedback from the client. The lack of a complete and 
representative regression database therefore slows down the 
maintenance process and causes additional costs. The methods for 
data generation based on data and workload characterization as 
envisioned in Oligos and Myriad would offer a remedy to this 
problem. 

5. OPEN ISSUES AND CONCLUSIONS  
We have given an overview of issues in big data benchmarking 
and testing, with a strong focus on data generation. We believe 
that efficiently generating a huge, realistic data set is an important 
prerequisite for the advancement, evaluation, and fair comparison 
of big data systems. Myriad [Myr13], PDGF [DPG13], and Oligos 
[Oli13] are a first step in this direction. However, in the context of 
big data generation and benchmarking, a large number of 
challenges remain open.  
However, in the context of big data generation and benchmarking, 
a large number of challenges remain open. For realistic data 
generation from a given reference dataset the challenges exist 
both in the analysis and the synthesis phase.  
During the analysis phase, a combination of data characterization 
and profiling methods can be identified and applied in order to 
increase the quality of the domain information that can be inferred 
directly from the reference database. Such methods will allow to 
efficiently determine multi-key dependencies, in particular 
referential integrity, as well as to profile data with complex 
structure (e.g., text, graphs, NF² and hierarchical data). In order to 
preserve privacy when conducting data profiling, data obfuscation 
methods may as well be required. [Nau13] lists further challenges 
in the area of data profiling. 
Inferred schema information and constraints must be then unified 
into an intermediate representation (IR) in the synthesis phase. 
Two problems exist in this context. First, in order to facilitate the 
subsequent translation of the IR into a data generator 
specification, the IR should lend itself to the features and 
primitives common to the underlying data-generation engines. 
Second, the unification process should determine and handle 



inconsistencies in the domain information collected in the analysis 
phase. Recently, Arasu [AKL11] and Torlak [Tor12] suggested 
two different constraint-based languages for data generator 
specification that can serve as a starting point for the development 
of a suitable IR and synthesis algorithm. For both languages, the 
authors give sufficiency conditions for the existence of a data set 
fulfilling the input constraints and provide approximate 
algorithms to find such an instance. The approach presented in 
[Tor12] uses a mix of hard (dimension or integrity) and soft 
(statistical) constraints and is restricted to dimension models, 
whereas [AKL11] works on general relational models and relies 
solely on soft (cardinality) constraints (hard constraints are 
represented implicitly as a special form of soft constraints). As the 
target language in our setting is likely to include primitives that 
directly enforce certain types of hard constraints (e.g. unique keys, 
foreign keys), we believe that a distinction between soft and hard 
constraints in the IR is a more promising approach. 
Another big open area is the provisioning of workloads. 
Traditional benchmarks focus on simple workloads that 
essentially follow the relational algebra or an NF² algebra/ 
XQuery. For evaluating and testing big data analytics systems, we 
will require more complex workloads that involve machine 
learning algorithms, information extraction, and graph 
analysis/mining. The lack of a standardized data analysis language 
currently is a big obstacle for arriving at realistic, comparable, and 
universally useful workload specifications. Ideally, until a 
standardized declarative language is available use-case 
repositories may be a first step in this direction.     
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