
Tomograph: Highlighting query parallelism in a multi-core
system

Mrunal Gawade
CWI, Amsterdam

mrunal.gawade@cwi.nl

Martin Kersten
CWI, Amsterdam

martin.kersten@cwi.nl

ABSTRACT
Query parallelism improves serial query execution perfor-
mance by orders of magnitude. Getting optimal perfor-
mance from an already parallelized query plan is however
difficult due to its dependency on run time factors such as
correct operator scheduling, memory pressure, disk io per-
formance, and operating system noise. Identifying the exact
problems in a parallel query execution is difficult due to
inter-dependence of these factors.

In this paper we present Tomograph, a tool to visualize
the parallel query execution performance bottlenecks. To-
mograph provides a time ordered view of operator execu-
tion aligned with cpu, memory, and disk IO usage, in an
operator at a time execution model. We discuss the us-
age of Tomograph to identify parallelism issues such as low
multi-core utilization, erroneous operator scheduling, incor-
rect data partitioning, and blocking operators. We share our
experiences, insights gained and discuss possible solutions to
the identified problems.

Categories and Subject Descriptors
H.4 [Database Architecture]: Performance Analysis

General Terms
Query Execution Analysis Tools

Keywords
Visualization, Query Parallelism Bottlenecks

1. INTRODUCTION
Query execution performance analysis tools assume a very

important role for tuning database systems [1][2]. Some of
the common methods for performance analysis are explain
plan based operator statistics analysis [3][4], profiler based
SQL query analysis [5], and query execution trace based fine
grained analysis [6]. Explain based analysis often involves a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

visualization of query plans in a static graph format, anno-
tated with operator statistics. Execution trace based anal-
ysis involves filtering of trace attributes and front end visu-
alizers which aggregate trace information to provide a con-
densed view [7]. The volume of information contained in a
trace, both in terms of number of attributes and quantity of
information, could grow very large. The query performance
analysis using the methods described before are well suited
for SQL / operator statistics based analysis. However, par-
allel query execution analysis on the basis of operator time
ordered issues is difficult using these methods.

Hence, time ordering based visualization methods assume
unusual importance in the world of parallelism. In a parallel
execution, time ordering of parallel execution context pro-
vides a lot of insight about the state of the system. Identify-
ing problems such as computational skew in parallel threads
is easy by visualizing the execution timeline of each thread
side by side, as compared to deciphering it from statistics of
individual operators in a graph visualization. Problems such
as wrong operator scheduling in a complex plan which are
very difficult to pinpoint otherwise can be spotted quickly
by visualizing the operator execution ordering. Getting an
insight about the possible parallelism problems is thus a
matter of coming up with a correct visual scheme.

In this paper we introduce a new visual tool the Tomo-
graph, that helps in identifying performance bottlenecks in
a parallel query execution, on a single canvas. Tomograph
provides a coherent time ordered view of operator execution,
cpu usage, memory usage, and disk IO activity. It improves
the ability to pinpoint the performance issues during paral-
lel query execution. We use it to explore the operator at a
time execution model of the MonetDB execution engine [8].

Paper structure: The structure of the paper is as fol-
lows. In Section 2 we provide a brief introduction to the ex-
isting parallelism techniques. We also discuss the operator
at a time execution model and the parallelism technique it
uses. Section 3 elaborates on the Tomograph architecture.
In Section 4 we illustrate the analysis of different parallel
query execution bottlenecks using Tomograph. Section 5
discusses the related work. We conclude in Section 6.

2. QUERY PARALLELISM
This section provides a brief introduction to the existing

query parallelism techniques. It also discusses parallelism in
the context of the operator at a time execution model.

Query parallelism techniques could be broadly classified
on the basis of granularity of parallelism [9]. The classifica-
tion at the highest granularity could be as inter-query and

X_3 := sql.bind(X_2,"sys","table","a",0);
X_17 := algebra.uselect(X_3, A1, A2);

Figure 1: A serial MonetDB Assembly Language
(MAL) plan with a single select operator

intra-query parallelism [10]. In inter query parallelism two
or more queries execute in parallel, while sharing available
resources such as CPU, memory, and disk IO. In intra-query
parallelism, multiple operators in a query plan execute in
parallel. Intra-query parallelism could be further divided
into inter-operator and intra-operator parallelism. In inter-
operator parallelism, two or more disjoint operators execute
in parallel. In intra-operator parallelism multiple instances
of the same operator operate on range partitioned data. Op-
erators in a serial plan of a pipelined query execution model
(open-next-close) exhibit inter-operator parallelism, whereas
in a parallel plan the operators parallelized using the ex-
change operator mechanism exhibit intra-operator parallelism
[11].

This paper uses an operator at a time execution model
for elaborating the use case of Tomograph. In the opera-
tor at a time execution model, an operator executes com-
pletely before the next data flow dependent operator execu-
tion begins. We describe this execution model in the context
of MonetDB, the open source columnar database system.
MonetDB operators are represented in MonetDB Assembly
Language(MAL) [12]. MAL operators are mapped to their
relational algebra counterparts. In Figure 1 X 17 := alge-
bra.uselect(X 3, A1, A2); is a MonetDB instruction. The
uselect operator in this instruction represents the relational
algebra operator scan select. MonetDB uses binary associ-
ation tables (BAT) to store the result of an operator execu-
tion. In the instruction X 17 represents a BAT which stores
the result of the operator uselect. Uselect accepts X 3 as an
input BAT and A1, A2 as the range select parameters. Us-
elect executes completely producing the intermediate result
in the variable X 17 justifying the name operator at a time
execution model.

The operator at a time execution model exhibits both
intra-operator and inter-operator parallelism. Consider the
parallel plan in Figure 2. It is obtained by 2 way parti-
tioning of the column a from the serial plan in Figure 1.
Two instances of the uselect operator operate on each of
the partitioned column ranges. Another operator mat.pack
combines the output of the two uselect operators in the end.
Let us name each of the 6 instructions in the parallel plan
in Figure 2 as A, B, C, D, E, and F. Instruction C is data
flow dependent on the output of instruction A (A->C). Data
flow dependency in other instructions are (B->D) and (C,D-
>E). Hence, the instructions (A,B) and (C,D) could be ex-
ecuted in parallel. Instructions C and D executing in par-
allel is a case of intra-operator parallelism, since the same
operator instance is operating on two disjoint range of parti-
tioned data. The instruction F can execute in parallel with
any other instruction. Hence, it is an example of the inter-
operator parallelism.

2.1 Operator mapping
The main operators in MonetDB could be mapped to their

relational algebra operator semantics such as scan, join, ag-
gregation, group, sort, and projection. Being a column store

A X_3 := sql.bind(X_2,"sys","table","a",0,1,2);
B X_4 := sql.bind(X_2,"sys","table","a",0,2,2);
C X_17:= algebra.uselect(X_3, A1, A2);
D X_18:= algebra.uselect(X_4, A1, A2);
E X_19:= mat.pack(X_17, X_18);
F X_20:= alarm.time();

Figure 2: A parallel MonetDB Assembly Language
(MAL) plan with 2 way partitioned select operator

there are also many administrative operators which are used
for tuple reconstruction. However, in this paper we focus
only on the main operators. The main operator mapping is
as follows.
1. Select - algebra.uselect, algebra.thetauselect, algebra.slice
2. Join - algebra.join, algebra.leftjoin, algebra.semijoin
3. Aggregation - aggr.sum, aggr.count, aggr.groupby, mat.pack
4. Arithmetic- batcalc.-, batcalc.*
5. Groupby- group.multicolumn, group.sort, group.done

Based on the query type, the amount of partitioning, and
the operation context, the execution duration of operators
could vary considerably. The main operators execute for a
long duration (seconds or ms) compared to the execution
duration of the administrative operators (µs). Administra-
tive operator’s execution can often not be visualized as its
duration granularity is too small to display, as compared to
the total query execution time. Hence, Tomograph displays
only the expensive operators.

3. TOMOGRAPH
Tomograph is a visual tool that provides a time ordered

view of operator execution in alignment with the multi-core
CPU, the memory, and the IO activity. It helps in under-
standing where does the time go during parallel query execu-
tion from individual operator execution perspective. In this
section we describe in brief the architecture of Tomograph.
We also provide details about how to read a Tomograph.

3.1 Tomograph architecture
Tomograph is a command line client which connects to

a MonetDB server. It uses GNUPlot to visualize the Mon-
etDB execution trace. Tomograph is implemented in “C”.

Tomograph uses a UDP connection to connect to the Mon-
etDB server. When a query is fired from a MonetDB client,
the MonetDB profiler starts to send the execution trace to
Tomograph on the UDP connection. The trace consists of
information such as operator start time, finish time, total
time of execution, thread id, cpu usage, memory usage, io
usage, etc. Tomograph parses and filters out the trace in-
formation to generate input data points for different type of
graph generation. Once the complete profiled data is avail-
able the visualization phase begins.

Tomograph creates a GNUPlot script to generate multi-
plots from the available profiled attribute data. Each opera-
tor in the main graph is color coded. The color code map is
static to help in the comparison of the same operators across
different query invocations. A single query plan can contain
a large number of operators making it hard to understand
the main graph. With multiple graphs on a single canvas
and a lot of information on the display, an understanding of
how to read the Tomograph is essential. We describe it in

the next subsection.

3.2 How to read a Tomograph
We explain how to read a Tomograph using the graph from

Figure 3 as an example. The main graph contains operator
execution timeline and should be read in alignment with the
graphs containing information on the CPU, the memory, and
the IO activity.

The operator analytics information for the main graph
is provided by the legend present at the bottom of the graph.
The legend provides a color map for each operator in the
plan along with the aggregated execution time for all opera-
tors of the same type. Each operator has a static color. The
operators are classified as expensive or cheap based on their
duration of execution. The duration of operator execution
could vary from a few microseconds upto seconds. The main
graph displays only the expensive operators. For example,
from Figure 3 consider the operator algebra.leftjoin (yellow).
There are 82 such operators. The total aggregated time of
execution of all these operators is 5.26 seconds. Since this
time is considerable as compared to the total execution time,
this operator is labelled as an expensive operator. However,
the distribution of execution duration amongst 82 operators
could vary. As long as there is a single operator with consid-
erable duration, the operator is categorized as an expensive
operator.

The main graph displays the operator execution time-
line on multiple threads of execution. Each horizontal line
represents a thread of execution. The total number of lines
equals the total number of worker threads. Each thread ex-
ecutes multiple operators sequentially. The presence of a
colored box on a thread line indicates an operator under
execution. The length of the box represents the duration
of operator execution. (The language.dataflow operator on
thread 4 should be ignored in all graphs as it’s a proxy oper-
ator). An operator execution representation could indicate
multiple possible system states such as an actual computa-
tion in progress, wait on lock, cache, memory, or disk IO
access. Tomograph does not deal with the granularity of
dissection of what happens during individual operator exe-
cutions. The presence of a white space on the thread line
indicates the lack of operator execution. The smaller the
white space, the better the multi-core utilization of the sys-
tem.

The CPU activity per core is displayed in the graph
immediately above the main graph. Each horizontal line
indicates one core. The line oscillates depending on whether
an operator is being executed or not.

The resident set usage graph is present above the CPU
activity graph. It shows the memory consumption by the
MonetDB server. The memory usage grows and shrinks on
the basis of the intermediate data generation. This graph
also represents disk IO activity in terms of read and write
IO’s per miliseconds, if IO occurs.

4. EVALUATION
Tomograph is being used for analysing parallel query exe-

cution performance problems. In this section we describe our
analysis of some of the identified problems such as inefficient
multi-core utilization, incorrect operator scheduling, data
partitioning, blocking operator, and static heuristic rules.
We use TPC-H benchmark queries on the scale factor 10
dataset for the evaluation. All queries are executed during

IO
 p

er
 m

s

reads
writes

m
em

or
y

in
 G

B

7.0

9.4

CP
U

th
re

ad
s

seconds, multi-core utilization 97.8 %

4

6

7

8

9

10

11

12

13

0 1 3 4 6 7 9 11 12 14 16.00

aggr.count
36 calls 29.44 sec

aggr.sum
74 calls 58.47 sec

algebra.leftjoin
82 calls 5.26 sec

algebra.join
20 calls 10.59 ms

algebra.kdifference
65 calls 8.36 ms

algebra.kunion
56 calls 12.90 ms

algebra.markT
10 calls 0.86 ms

algebra.selectNotNil
45 calls 2.82 ms

algebra.thetauselect
17 calls 4.58 sec

algebra.*
1 calls 0.07 ms

bat.mirror
19 calls 33.59 ms

bat.reverse
11 calls 0.90 ms

batcalc.-
18 calls 1.75 sec

batcalc.*
75 calls 6.26 sec

calc.lng
3 calls 0.59 ms

mtime.*
1 calls 0.26 ms

group.multicolumns
10 calls 14.38 sec

group.refine
1 calls 0.09 ms

language.dataflow
1 calls 15.99 sec

mat.pack
15 calls 2.10 ms

io.stdout
1 calls 0.08 ms

sql.*
133 calls 20.84 ms

 694 MAL instructions executed

Figure 3: TPC-H Q1 hot run execution on scale
factor 10 shows excellent multi-core utilization.

hot runs of the MonetDB server (default branch changeset
c56e636745dd). The operating system Fedora 16 operates
on Intel Core i7-2600 CPU @ 3.40GHz, 16 GB DDR3 Dual
channel RAM, and a 7200 RPM 1 TB SATA hard disk.

4.1 Multi-core utilization
We define multi-core utilization as the sum of the execu-

tion time of all operators on all active threads divided by the
total time of all active threads. Higher multi-core utilization
ensures optimal resource usage. Next we analyze queries 1
and 10 from Figures 3 and 4 on the basis of their multi-core
utilization.

Query 1 (Q1) represented in Figure 3 shows excellent
multi-core utilization at 97.8%. This is evident from the
lack of white space on any of the thread lines during the
query execution timeline. The maximum multi-core utiliza-
tion is a result of a simple query plan, which does not have
operators such as join. The only table present is lineitem,
whose column partitions are operated upon by the range
select operators.

In comparison Query 10 (Q 10) represented in Figure 4
shows less multi-core utilization at 65.2%. The presence
of white space on thread execution lines is a visual indica-
tion of less multi-core utilization. The query has selection
predicates working on columns of the lineitem table and the
orders table. The query also involves join predicates which
makes the plan more complex as compared to Q1. Join pred-
icates are data flow dependent on the result of the selection
predicates. This introduces a waiting period amongst oper-
ators leading to less multi-core utilization. We analyse this

IO
 p

er
 m

s

reads
writes

m
em

or
y

in
 G

B

5.05.1

CP
U

th
re

ad
s

milliseconds, multi-core utilization 65.2 %

4

6

7

8

9

10

11

12

13

0 135 270 405 540 675 810 945 1080 1215 1350.43

aggr.sum
10 calls 306.60 ms

algebra.leftjoin
71 calls 788.49 ms

algebra.join
48 calls 899.45 ms

algebra.kdifference
70 calls 8.45 ms

algebra.kunion
58 calls 7.56 ms

algebra.slice
1 calls 0.06 ms

algebra.markT
66 calls 6.69 ms

algebra.selectNotNil
9 calls 0.60 ms

algebra.uselect
20 calls 3.41 sec

algebra.*
33 calls 425.20 ms

bat.mirror
24 calls 2.66 ms

bat.reverse
103 calls 8.65 ms

batcalc.-
9 calls 15.39 ms

batcalc.*
9 calls 25.56 ms

calc.lng
1 calls 0.23 ms

mtime.*
1 calls 0.18 ms

group.multicolumns
10 calls 446.82 ms

language.dataflow
2 calls 1.35 sec

mat.pack
5 calls 158.60 ms

pqueue.*
1 calls 7.86 ms

io.stdout
1 calls 0.07 ms

sql.*
123 calls 19.32 ms

 675 MAL instructions executed

Figure 4: TPC-H Q10 hot run execution on scale
factor 10 shows less multi-core utilization as com-
pared to Q1 in Figure 3.

behaviour in the next section. Less multi-core utilization is
also a result of the presence of dataflow dependent opera-
tors such as group.multicolumn (pink). It leads to a blocking
behaviour resulting in less multi-core utilization, which we
describe in Section 4.3.

4.2 Scheduling and partitioning
Q10 in Figure 4 is a good example of parallel execution

problems in operator scheduling and data partitions.
The query has one scan select operation on the lineitem

and the orders table column each (green). MonetDB paral-
lel plan re-writer module always partitions columns in the
largest table in the plan, ignoring the smaller table columns.
This rule is in accordance with the OLAP setting, where the
fact table is the largest table (hence partitioned), and di-
mension tables are smaller (hence replicated). The presence
of 8 CPU cores leads to 8 equi-range disjoint partitions of
the lineitem table column. One uselect operator works on
each partition. A single uselect operator works on the orders
table column, since it is not partitioned.

The scheduler schedules 8 execution threads. It has two
possible choices. 1. To schedule 8 uselect operators on the 8
way partitioned column. 2. To schedule 1 uselect operator
on the non-partitioned single column and 7 uselect opera-
tors on 8 way partitioned column. In Figure 4 we observe
that the scheduler uses the 2nd choice by scheduling a sin-
gle uselect operator (topmost left green) on thread 13 and
7 partitioned uselect operators (green) on threads 6 to 12.
The 8th uselect operator gets scheduled on thread 12 after
the first uselect operator scheduled on it finishes its execu-

IO
 p

er
 m

s

reads
writes

711

m
em

or
y

in
 G

B

0.1

1.6

CP
U

th
re

ad
s

milliseconds, multi-core utilization 67.2 %

3

4

6

7

8

9

10

11

12

13

0 652 1304 1956 2608 3260 3912 4565 5217 5869 6521.54

aggr.count
1 calls 37.21 ms

algebra.leftjoin
4 calls 854.10 ms

algebra.join
14 calls 1.56 sec

algebra.semijoin
1 calls 345.86 ms

algebra.kdifference
9 calls 0.65 ms

algebra.kunion
12 calls 1.18 ms

algebra.markT
8 calls 0.55 ms

algebra.uselect
6 calls 2.71 sec

algebra.*
5 calls 80.06 ms

bat.mirror
5 calls 0.67 ms

bat.reverse
16 calls 1.10 ms

batcalc.*
3 calls 1.24 sec

calc.lng
1 calls 0.06 ms

calc.str
1 calls 0.05 ms

mtime.*
1 calls 0.10 ms

group.*
1 calls 60.80 ms

language.dataflow
1 calls 6.52 sec

io.stdout
1 calls 0.03 ms

io.*
1 calls 0.04 ms

sql.*
28 calls 2.67 ms

.
1 calls 0.06 ms

 120 MAL instructions executed

Figure 5: TPC-H Q4 hot run execution on scale
factor 10 shows poor parallelism as compared to Q1,
Q10 in Figures 3, 4.

tion. The uselect operators on threads 6 to 11 finish first.
However, they continue to wait till the uselect operation
on the non-partitioned column (thread 13) finishes. This
wait introduces idle time on multi-cores. The partitioned
join operator which is scheduled next (purple) needs results
from both types of (non-partitioned column and partitioned
column) uselect operators as its input. The join operators
following the 6 uselect operators (thread 6 to 11) start exe-
cution as soon as the uselect operator on thread 13 finishes.

This case shows the problem of incorrect scheduling or-
der and incorrect number of partitions. One possible way to
resolve this issue is by identifying the correct number of par-
titions. For example instead of 8 partitions of the lineitem
table column, use only 7 partitions. This would avoid wait-
ing time for other threads, as they wait for the 8th select
operation to finish. The other possibility is to parallelize
the select operation on the single non-partitioned column of
the orders table and schedule it to execute first. This would
serialize the execution of select operations on the orders and
the lineitem table, thereby removing the waiting time.

4.3 Blocking operator
A blocking operator in an operator at a time execution

context is an operator which does not allow any other oper-
ator to execute during its execution. The blocking behaviour
is a result of the data flow dependent nature of operators,
where a certain operator (blocking operator) accepts as in-
put other dataflow operators output. Group.multicolumn
(pink) is a blocking operator in Q10 in Figure 4. However,
any operator could show blocking behaviour depending on

IO
 p

er
 m

s

reads
writes

6908

m
em

or
y

in
 G

B

0.1

1.6
CP

U
th

re
ad

s

milliseconds, multi-core utilization 67.0 %

3

4

6

7

8

9

10

11

12

13

0 541 1083 1625 2166 2708 3250 3792 4333 4875 5417.43

aggr.count
1 calls 37.38 ms

algebra.leftjoin
4 calls 843.00 ms

algebra.join
14 calls 1.61 sec

algebra.semijoin
1 calls 228.66 ms

algebra.kdifference
9 calls 0.69 ms

algebra.kunion
12 calls 1.16 ms

algebra.markT
8 calls 0.49 ms

algebra.uselect
6 calls 1.55 sec

algebra.*
5 calls 80.42 ms

bat.mirror
5 calls 0.60 ms

bat.reverse
16 calls 0.99 ms

batcalc.*
3 calls 1.25 sec

calc.lng
1 calls 0.04 ms

calc.str
1 calls 0.05 ms

mtime.*
1 calls 0.11 ms

group.*
1 calls 61.07 ms

language.dataflow
1 calls 5.41 sec

io.stdout
1 calls 0.04 ms

io.*
1 calls 0.04 ms

sql.*
28 calls 2.62 ms

.
1 calls 0.10 ms

 120 MAL instructions executed

Figure 6: TPC-H Q4 hot execution on scale factor
10 with the intra-operator uselect, visible on CPU
activity graph. The uselect operator execution time
shows 41% improvement as compared to the uselect
operator execution time in Q4 in Figure 5

the type of query. One way to improve the query execution
performance in a blocking operator case is to parallelize the
blocking operator itself. We describe the experiment of an
intra-operator parallel implementation of the operator use-
lect next.

The uselect operator from Q4 in Figure 5 is considered for
the intra-operator parallel implementation. We choose the
uselect operator as it is a relatively easy operator to experi-
ment with. We choose Q4 as it does not exhibit good paral-
lelism. The presence of only two active threads at the end of
the query execution shows that the query is not parallelised.
We expect to improve Q4 execution time by intra-operator
parallelization of the uselect operator.

Our intra-operator parallel implementation of the uselect
operator uses a map-reduce style partitioning of the uselect
operator code by spawning 8 threads which do a selection on
range partitioned data [13]. The data selected by individual
threads is combined by a reducer thread.

The graph in Figure 6 shows the Q4 execution timeline
with the intra-operator parallel uselect implementation. It
is visible on the CPU graph where 8 lines are active during
the uselect operator execution. The uselect operator’s exe-
cution time has reduced to 1.3 seconds from 2.28 seconds,
which is an improvement of around 41%. However, we ex-
pect at least a 4 times improvement due to the presence of
4 physical cores. A fine grained analysis shows the time for
the mapper and reducer phases as 550 and 80 miliseconds
respectively. We also observe an interesting fact that the

IO
 p

er
 m

s

reads
writes

1

m
em

or
y

in
 G

B

0.1

1.1

CP
U

th
re

ad
s

milliseconds, multi-core utilization 91.2 %

3

4

6

7

8

9

10

11

12

13

0 218 437 655 874 1093 1311 1530 1749 1967 2186.52

aggr.count
1 calls 37.91 ms

algebra.leftjoin
11 calls 1.68 sec

algebra.join
73 calls 2.97 sec

algebra.semijoin
1 calls 68.94 ms

algebra.kdifference
44 calls 14.36 ms

algebra.kunion
30 calls 2.43 ms

algebra.markT
35 calls 2.43 ms

algebra.uselect
19 calls 4.71 sec

algebra.*
18 calls 82.56 ms

bat.mirror
25 calls 2.46 ms

bat.reverse
70 calls 4.26 ms

batcalc.*
16 calls 2.36 sec

calc.lng
1 calls 0.06 ms

calc.str
1 calls 0.06 ms

mtime.*
1 calls 0.09 ms

group.*
1 calls 60.87 ms

language.dataflow
1 calls 2.18 sec

mat.pack
1 calls 137.73 ms

io.stdout
1 calls 0.04 ms

io.*
1 calls 0.04 ms

sql.*
68 calls 6.98 ms

.
1 calls 0.06 ms

 420 MAL instructions executed

Figure 7: TPC-H Q4 hot execution run on scale fac-
tor 10 with forced parallelization. Q4 execution time
improves 3 times the Q4 execution time in Figure 5

parallel activity for 8 cores in the CPU activity graph does
not span the entire uselect execution time. These types of
discrepancies are possible to notice immediately due to To-
mograph’s coherent resource utilization visualization ability.

4.4 Static heuristic parallelization rules
Query 4 in Figure 5 exhibits almost no parallelization.

It however shows good multi-core utilization (as defined in
Section 4.1) as only two active threads are present during
the query execution. The poor parallelism is a result of
a non-optimal partitioned plan. MonetDB uses a heuris-
tic rule based plan rewriter module to generate a parallel
plan from a serial plan. During the plan rewriting phase,
the module suspects the problem of plan explosion. Plan
explosion results when the number of instructions in a par-
allel plan increases to a large number. In Q4 the problem of
join explosion arises. The plan re-writer module introduces
a cartesian product of join operators. The join operator,
depending on the type of data (unique, random) it oper-
ates on, does different amounts of work. As an example if
there are multiple repeated values in the two columns being
joined then the result is huge. The heuristic rule based plan
re-writer checks for such conditions. If it suspects matching
conditions, the parallel plan generation is suspended. Q4
does not get parallelized due to this condition.

In this experiment we force the parallel plan rewriter-
module to generate the parallel plan to understand the sever-
ity of the plan explosion case. The heuristic rule condition
which checks for the join condition for Q4 is deactivated.
The resultant exploded plan visualized in Figure 7 contains

420 instructions, as compared to the 120 instructions in the
plan visualized in Figure 5. The expanded plan contains 60
instructions with a join operator. However, the query ex-
ecution time improves by 3 times as compared to the Q4
execution time in Figure 5. This is a result of increased
parallelism and 91.2% multi-core utilization. The execution
time of individual operators decreases by more than 4 times.
Query parallelization is beneficial if the parallel query exe-
cution time is considerably less than the serial execution
time. If there are too many instructions in the parallel plan
it might incur overheads in terms of instruction interpreta-
tion, scheduling, result combination, etc. These overheads
might negate the gains due to parallelism. This experiment
shows that static heuristic rules could misjudge parallelism
decisions and could hamper query execution performance.

5. RELATED WORK
Most database systems use the exchange operator based

parallelism. The exchange operator was introduced by the
Volcano system [11]. It is an auxiliary operator which is
introduced in a serial query plan by a plan re-writer module,
depending on the degree of parallelism needed.

Microsoft SQL server uses the exchange operator based
query parallelization [14]. It is also being used by Vec-
torwise, a leading OLAP system [4]. Postgres uses a pool
of database servers to have maximum multi-core utilization
[15]. ORACLE uses a technique based on distributed query
processing [16]. DB2 uses a just in time plan paralleliza-
tion approach based on dynamic resource availability [17].
High performance analytic appliances by Netezza use a dis-
tributed query processing approach using a combination of
FPGA based accelerators and multi-core CPUs [18].

Most of these systems use a legacy command explain to
visualize the query plan in a tree based format, with added
functionality such as operator statistics and color coding [1].
Microsoft SQL server uses a GUI based suite of tools named
the SQL server management studio [19]. Vectorwise uses
graph based plan visualization with node color coding us-
ing an open source package, graphviz. Postgres uses similar
tools [20]. MonetDB uses a tool called stethoscope, to vi-
sualize a data flow dependency graph of a query plan [21].
Vtune analyzer from Intel is used for profiling program ex-
ecution using a similar visualization scheme as Tomograph
[22]. However, it does not provide a parallel operator execu-
tion analysis the way Tomograph does. Operator execution
visualization in a parallel manner as displayed by Tomo-
graph is thus unique.

6. CONCLUSION
Identifying parallel query execution performance bottle-

necks holds a crucial importance for getting optimal system
performance. In this paper we have presented Tomograph, a
visual tool that has proved immensely helpful in identifying
parallel query execution issues such as low multi-core uti-
lization, incorrect operator scheduling, incorrect data parti-
tioning, and blocking operators. The coherent visualization
of the system state in terms of operator execution timeline,
CPU, memory, and IO activity helps to reason about each
of the bottleneck issues in a holistic manner.

Tomograph benefits from the operator at a time execu-
tion model which allows operator execution ordering to be
visualized in a discrete manner. However, the underlying

visualization principles could prove immensely helpful for
other execution models to identify parallel query execution
performance bottlenecks.

7. REFERENCES
[1] Dbtools. http://www.en.wikipedia.org/wiki/

Comparison of database tools.

[2] Dennis Elliott Shasha and Philippe Bonnet. Database
tuning: principles, experiments, and troubleshooting
techniques. Morgan Kaufmann, 2003.

[3] Immanuel Chan. Oracle database performance tuning
guide, 11g release 1 (11.1) b28274-02.

[4] Actian vectorwise technical white paper.
http://www.actian.com/media/whitepapers/unsorted/ivw-
technical-wp.pdf.

[5] Sajal Dam and Grant Fritchey. SQL Server 2008
Query Performance Tuning Distilled. Apress, 2009.

[6] Monetdb profiler.
http://www.monetdb.org/Documentation/Manuals/
MonetDB/Profiler.

[7] Pramukh Narayan Rao Jadhav. Performance
evaluation of oracle parallel execution. Master’s thesis,
California State University, Sacramento, 2011.

[8] Peter Boncz et al. Database architecture optimized for
the new bottleneck: Memory access. In Proc of VLDB,
pages 54–65, 1999.

[9] M.T. Özsu and P. Valduriez. Distributed and parallel
database systems. ACM Computing Surveys (CSUR),
28(1):125–128, 1996.

[10] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Communications of the ACM, 35(6):85–98, 1992.

[11] Goetz Graefe. Encapsulation of parallelism in the
Volcano query processing system, volume 19. 1990.

[12] Monetdb assembly language.
http://www.monetdb.org/Documentation/Manuals/
MonetDB/MALreference.

[13] Colby Ranger et al. Evaluating mapreduce for
multi-core and multiprocessor systems. In HPCA,
pages 13–24, 2007.

[14] Sql server parallelization. http://www.simple-
talk.com/sql/learn-sql-server/understanding-and-
using-parallelism-in-sql-server/.

[15] Postgres-pgpool.
http://www.pgpool.net/mediawiki/index.php/Main Page.

[16] Oracle parallelization.
http://www.oracle.com/technetwork/database/bi-
datawarehousing/twp-parallel-execution-
fundamentals-133639.pdf.

[17] Y. Wang. Db2 query parallelism: Staging and
implementation.

[18] Stephen C Helmreich and Jim R Cowie. Data-centric
computing with the netezza architecture. 2006.

[19] Michael Coles. Pro T-SQL 2008 Programmers Guide.
Springer.

[20] postgresvisualizer. http://www.dbplanview.com.

[21] M. Gawade and M. Kersten. Stethoscope: a platform
for interactive visual analysis of query execution plans.
Proc of VLDB, 5(12):1926–1929, 2012.

[22] James Reinders. VTune performance analyzer
essentials. Intel Press, 2005.

